Câu hỏi:

27/01/2026 29 Lưu

Cho giả thiết – kết luận ở bảng sau:

GT

\(a\parallel b;{\rm{ }}a \bot c\)

KL

\(c \bot \,b\)

Phát biểu định lí thành lời ta được:

A. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia.

B. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó song song với đường thẳng kia.

C. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó tạo với đường thẳng kia một góc \(60^\circ .\)

D. Cả A, B, C đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Phát biểu đúng là: Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. Dùng hình vẽ để từ giả thiết suy ra kết luận.

B. Dùng đo đạc thực tế để suy ra kết luận từ giả thiết.

C. Dùng lập luận để từ giả thiết suy ra kết luận.

D. Cả A, B, C đều sai.

Lời giải

Đáp án đúng là: C

Chứng minh định lí là dùng lập luận đề từ giả thiết suy ra kết luận.

Câu 4

a) \(\widehat A + \widehat B + \widehat C = 180^\circ \).

Đúng
Sai

b) \(\widehat A = 90^\circ  - \widehat C\).

Đúng
Sai

c) \(\widehat A - \widehat B = 2\widehat C\).

Đúng
Sai
d) \(\widehat A = \widehat B\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Giả thiết của định lí là điều suy ra.     

B. Kết luận của định lí là điều đã cho.

C. Giả thiết của định lí là điều đã cho.

D. Chứng minh định lí là dùng lập luận để từ kết luận suy ra giả thiết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng vuông góc với nhau.

B. Một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.

C. Hai góc bằng nhau thì đối đỉnh.

D. Hai góc đối đỉnh thì bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP