Câu hỏi:

28/01/2026 42 Lưu

Cho hai hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + 2x\)\(g\left( x \right) = m{x^3} + n{x^2} - 2x\) với \(a\,,\,\,b\,,\,\,c\,,\,\,m\,,\,\,n \in \mathbb{R}.\) Biết hàm số \(y = f\left( x \right) - g\left( x \right)\) có ba điểm cực trị là \( - 1\,;\,\,2\) và 3. Tính diện tích hình phẳng giới hạn bởi hai đường \(y = 18f'\left( x \right)\)\(y = 18g'\left( x \right)\) (nhập đáp án vào ô trống).

Đáp án  ____

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 142

Ta có \(f\left( x \right) - g\left( x \right) = \left( {a{x^4} + b{x^3} + c{x^2} + 2x} \right) - \left( {m{x^3} + n{x^2} - 2x} \right)\).

\[ \Rightarrow f\left( x \right) - g\left( x \right) = a{x^4} + \left( {b - m} \right){x^3} + \left( {c - n} \right){x^2} + 4x\].

\( \Rightarrow f'\left( x \right) - g'\left( x \right) = 4a{x^3} + 3\left( {b - m} \right){x^2} + 2\left( {c - n} \right)x + 4\).

Lại có \(y = f\left( x \right) - g\left( x \right) \Rightarrow y' = f'\left( x \right) - g'\left( x \right) = 4a\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\).

Khi đó \(4a \cdot \left( { - 2} \right) \cdot \left( { - 3} \right) = 24a = 4 \Leftrightarrow a = \frac{1}{6}.\)

Hoành độ giao điểm của hai đường \(y = 18f'\left( x \right)\)\(y = 18g'\left( x \right)\)

\(18f'\left( x \right) = 18g'\left( x \right) \Leftrightarrow f'\left( x \right) - g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 2}\\{x = 3}\end{array}} \right.\).

Do đó, diện tích hình phẳng cần tính là:

\[S = \int\limits_{ - 1}^3 {\left| {18f'\left( x \right) - 18g'\left( x \right)} \right|} \,{\rm{d}}x = 18\int\limits_{ - 1}^3 {\left| {4 \cdot \frac{1}{6}\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)} \right|} \,{\rm{d}}x = 142.{\rm{ }}\]

Đáp án cần nhập là: 142.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. thank.                           

B. blame.                      
C. commend.                
D. ignore.

Lời giải

Kiến thức về cụm động từ

blame sb for sth/doing sth: đổ lỗi cho ai về việc gì

Chọn B.

Dịch: Đôi khi, những người trẻ tuổi thường chỉ trích và đổ lỗi cho cha mẹ mình về hầu hết những hiểu lầm giữa họ.

Lời giải

(1) 3

Để đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 đường tiệm cận đứng khi phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.

Đặt \(t = {x^2}\,,\,\,t \ge 0.\)

Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) ta thấy, phương trình \(f\left( t \right) = m\) có 2 nghiệm dương \(t\) phân biệt khi \( - 1 < m < 3\).

Với mỗi giá trị \(t > 0\) cho ta 2 giá trị đối nhau của \(x\), nên với điều kiện \( - 1 < m < 3\), phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.

Do đó đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 tiệm cận đứng khi \( - 1 < m < 3\).

\(m \in \mathbb{Z}\) nên \(m \in \left\{ {0\,;\,\,1\,;\,\,2} \right\}\).

Đáp án cần nhập là: 3.

Câu 3

A. Tự sự.                       
B. Biểu cảm.                 
C. Miêu tả.                  
D. Nghị luận. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

  A. A smart phone and a 4-G sim card.             

B. A computer and the Internet.

C. A goal and learning efforts.                           
D. A content and the wish to learn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{\sqrt 5 }}{2}.\)                              
  B. \(\sqrt 5 .\)                
C. \(\frac{1}{{\sqrt 5 }}.\)   
D. \(\frac{2}{{\sqrt 5 }}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP