Câu hỏi:

28/01/2026 27 Lưu

Có bao nhiêu cặp số nguyên \(\left( {a\,;\,\,b} \right)\) thoả mãn \(a < 5\) và hàm số \(f\left( x \right) = a{x^4} + b{x^3} + {x^2} - 3\)\(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = f\left( 0 \right)\) (nhập đáp án vào ô trống)?

Đáp án  ___

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 27

• Với \(a = b = 0\) thoả mãn.

• Với \(a = 0\,;\,\,b \ne 0\) hàm bậc 3 không tồn tại min, \(\max \) (không thoả mãn).

• Với \(a < 0 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty \Rightarrow \) Không tồn tại min \(f(x)\) (loại) \( \Rightarrow a > 0\).

Do đó \(a > 0\)\(a < 5,a \in \mathbb{Z}\) nên \(a \in \left\{ {1;2;3;4} \right\}\).

Ta có \(f\left( 0 \right) = - 3 \Rightarrow \) Để hàm số thoả mãn yêu cầu thì \(f\left( x \right) \ge - 3\,;\,\,\forall x \ne 0.\)

\( \Leftrightarrow a{x^4} + b{x^3} + {x^2} \ge 0 \Leftrightarrow {x^2}\left( {a{x^2} + bx + 1} \right) \ge 0\)\( \Leftrightarrow a{x^2} + bx + 1 \ge 0\)

\( \Leftrightarrow \Delta = {b^2} - 4a \le 0 \Leftrightarrow {b^2} \le 4a\).

Với \(a = 1 \Rightarrow - 2 \le b \le 2\) có 5 cặp.                                    

Với \(a = 2 \Rightarrow - 2\sqrt 2 \le b \le 2\sqrt 2 \) có 5 cặp.

• Với \(a = 3 \Rightarrow - 2\sqrt 3 \le b \le 2\sqrt 3 \Rightarrow - 3 \le b \le 3\) có 7 cặp.                                   

• Với \(a = 4 \Rightarrow - 4 \le b \le 4\) có 9 cặp.

Vậy tổng cộng có \(1 + 5 + 5 + 7 + 9 = 27\) cặp \(\left( {a\,;\,\,b} \right)\) thoả mãn.

Đáp án cần nhập là: 27.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. thank.                           

B. blame.                      
C. commend.                
D. ignore.

Lời giải

Kiến thức về cụm động từ

blame sb for sth/doing sth: đổ lỗi cho ai về việc gì

Chọn B.

Dịch: Đôi khi, những người trẻ tuổi thường chỉ trích và đổ lỗi cho cha mẹ mình về hầu hết những hiểu lầm giữa họ.

Lời giải

(1) 3

Để đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 đường tiệm cận đứng khi phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.

Đặt \(t = {x^2}\,,\,\,t \ge 0.\)

Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) ta thấy, phương trình \(f\left( t \right) = m\) có 2 nghiệm dương \(t\) phân biệt khi \( - 1 < m < 3\).

Với mỗi giá trị \(t > 0\) cho ta 2 giá trị đối nhau của \(x\), nên với điều kiện \( - 1 < m < 3\), phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.

Do đó đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 tiệm cận đứng khi \( - 1 < m < 3\).

\(m \in \mathbb{Z}\) nên \(m \in \left\{ {0\,;\,\,1\,;\,\,2} \right\}\).

Đáp án cần nhập là: 3.

Câu 3

A. Tự sự.                       
B. Biểu cảm.                 
C. Miêu tả.                  
D. Nghị luận. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

  A. A smart phone and a 4-G sim card.             

B. A computer and the Internet.

C. A goal and learning efforts.                           
D. A content and the wish to learn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{\sqrt 5 }}{2}.\)                              
  B. \(\sqrt 5 .\)                
C. \(\frac{1}{{\sqrt 5 }}.\)   
D. \(\frac{2}{{\sqrt 5 }}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP