Để chế tạo tia laser, người ta sử dụng hốc quang học (optical cavity): sóng điện từ được phản xạ qua lại nhiều lần giữa hai gương (trong đó có một gương phản xạ bán phần để chùm tia laser lọt ra ngoài). Hai gương này được xem là hai đầu phản xạ cố định. Trong hốc quang học xuất hiện hiện tượng sóng dừng của sóng điện từ (Hình vẽ). Biết tia laser helium-neon có bước sóng 632,992 nm (màu đỏ) và khoảng cách giữa hai gương là 310,372 nm. Có bao nhiêu nút sóng hình thành trong hốc quang học?
Để chế tạo tia laser, người ta sử dụng hốc quang học (optical cavity): sóng điện từ được phản xạ qua lại nhiều lần giữa hai gương (trong đó có một gương phản xạ bán phần để chùm tia laser lọt ra ngoài). Hai gương này được xem là hai đầu phản xạ cố định. Trong hốc quang học xuất hiện hiện tượng sóng dừng của sóng điện từ (Hình vẽ). Biết tia laser helium-neon có bước sóng 632,992 nm (màu đỏ) và khoảng cách giữa hai gương là 310,372 nm. Có bao nhiêu nút sóng hình thành trong hốc quang học?

Quảng cáo
Trả lời:
Đáp án đúng là C
Ta có: \(L = n\frac{\lambda }{2} \Rightarrow n = \frac{{2L}}{\lambda } = \frac{{2 \cdot 310,372 \cdot {{10}^{ - 3}}}}{{632,992 \cdot {{10}^{ - 9}}}} \approx 980650,62\).
Suy ra: có 980651 nút sóng (kể cả hai nút sóng tại hai gương).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. thank.
Lời giải
Kiến thức về cụm động từ
blame sb for sth/doing sth: đổ lỗi cho ai về việc gì
Chọn B.
Dịch: Đôi khi, những người trẻ tuổi thường chỉ trích và đổ lỗi cho cha mẹ mình về hầu hết những hiểu lầm giữa họ.
Lời giải
Để đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 đường tiệm cận đứng khi phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.
Đặt \(t = {x^2}\,,\,\,t \ge 0.\)
Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) ta thấy, phương trình \(f\left( t \right) = m\) có 2 nghiệm dương \(t\) phân biệt khi \( - 1 < m < 3\).
Với mỗi giá trị \(t > 0\) cho ta 2 giá trị đối nhau của \(x\), nên với điều kiện \( - 1 < m < 3\), phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.
Do đó đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 tiệm cận đứng khi \( - 1 < m < 3\).
Vì \(m \in \mathbb{Z}\) nên \(m \in \left\{ {0\,;\,\,1\,;\,\,2} \right\}\).
Đáp án cần nhập là: 3.
Câu 3
A. A smart phone and a 4-G sim card.
B. A computer and the Internet.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
