Trong một thí nghiệm, người ta xác định được lượng nước thoát ra và lượng nước hút vào của mỗi cây trong cùng một đơn vị thời gian như sau:
Cây
A
B
C
D
Lượng nước hút vào
25 gam
31 gam
32 gam
30 gam
Lượng nước thoát ra
27 gam
29 gam
34 gam
33 gam
Theo suy luận lí thuyết, cây nào không bị héo?
Trong một thí nghiệm, người ta xác định được lượng nước thoát ra và lượng nước hút vào của mỗi cây trong cùng một đơn vị thời gian như sau:
|
Cây |
A |
B |
C |
D |
|
Lượng nước hút vào |
25 gam |
31 gam |
32 gam |
30 gam |
|
Lượng nước thoát ra |
27 gam |
29 gam |
34 gam |
33 gam |
Theo suy luận lí thuyết, cây nào không bị héo?
Quảng cáo
Trả lời:
Khi lượng nước hút vào bé hơn lượng nước thoát ra thì cây bị héo. Trong 4 cây, chỉ có cây B mới có lượng nước hút vào lớn hơn lượng nước thoát ra. Do đó, cây B không bị héo, còn các cây A, C, D đều bị héo. Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. thank.
Lời giải
Kiến thức về cụm động từ
blame sb for sth/doing sth: đổ lỗi cho ai về việc gì
Chọn B.
Dịch: Đôi khi, những người trẻ tuổi thường chỉ trích và đổ lỗi cho cha mẹ mình về hầu hết những hiểu lầm giữa họ.
Lời giải
Để đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 đường tiệm cận đứng khi phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.
Đặt \(t = {x^2}\,,\,\,t \ge 0.\)
Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) ta thấy, phương trình \(f\left( t \right) = m\) có 2 nghiệm dương \(t\) phân biệt khi \( - 1 < m < 3\).
Với mỗi giá trị \(t > 0\) cho ta 2 giá trị đối nhau của \(x\), nên với điều kiện \( - 1 < m < 3\), phương trình \(f\left( {{x^2}} \right) = m\) có 4 nghiệm \(x\) phân biệt.
Do đó đồ thị hàm số \(y = \frac{3}{{f\left( {{x^2}} \right) - m}}\) có 4 tiệm cận đứng khi \( - 1 < m < 3\).
Vì \(m \in \mathbb{Z}\) nên \(m \in \left\{ {0\,;\,\,1\,;\,\,2} \right\}\).
Đáp án cần nhập là: 3.
Câu 3
A. A smart phone and a 4-G sim card.
B. A computer and the Internet.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
