Câu hỏi:

29/01/2026 13 Lưu

Hộp thứ nhất đựng 1 quả bóng trắng, 1 quả bóng đỏ. Hộp thứ hai đựng 1 quả bóng đỏ, 1 quả bóng vàng. Lấy ra ngẫu nhiên từ mỗi hộp 1 quả bóng.

a) Xác định không gian mẫu và số kết quả có thể cảy ra của phép thử.

b) Biết rằng các quả bóng có cùng kích thước và khối lượng. Hãy tính xác suất của mỗi biến cố sau:

\(A\): “2 quả bóng lấy ra có cùng màu”;

\(B\): “Có đúng 1 quả bóng màu đỏ trong 2 quả bóng lấy ra”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Kí hiệu \(T\) là màu trắng, là màu đỏ và \(V\)là màu vàng.

Không gian mẫu . Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 4\)

b) Vì các quả bóng có cùng kích thước và khối lượng nên 4 kết quả trên có cùng khả năng xảy ra.

Chỉ có một kết quả thuận lợi cho biến cố A là nên \(n\left( A \right) = 1\).

Xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4}\).

Các kết quả thuận lợi cho biến cố B là \(\left( {{\rm{T}},{\rm{B}}} \right)\)\(\left( {B,V} \right)\) nên \(n\left( B \right) = 2\).

Xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn: Viết tập hợp \(\Omega \) và các tập hợp \[E,{\rm{ }}F,{\rm{ }}G\].

Lời giải

Ta có bảng sau:

                           A

B

1

2

3

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

5

\(\left( {5;1} \right)\)

\(\left( {5;2} \right)\)

\(\left( {5;3} \right)\)

\(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {{\rm{3}};2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\)

Số phần tử của \(\Omega \)\(15;n\left( \Omega \right) = 15\)

Số kết quả thuận lợi cho biến cố \(E\) là:\(E = \left\{ {\left( {3;2} \right);\left( {2;3} \right)} \right\} \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{{15}}\)

Ta có: \(F = \left\{ {\left\{ {(1;1);(1;2);(2;1);(1;3);(3;1);(2;2);(4;1)} \right\}} \right\}\)\( \Rightarrow P\left( {\;F} \right) = \frac{7}{{15}}\)

Ta có: \({\rm{G}} = \left\{ {(1;2);(2;1);(2;2);(2;3);(3;2);(4;1);(4;2);(4;3);(5;2)} \right\}\).

Tập hợp \(G\) có 9 phần tử. Vậy \(P\left( G \right) = \frac{9}{{15}} = \frac{3}{5}{\rm{. }}\)

Lời giải

Gọi \(n\) là số viên bi đỏ trong hộp. Ta có: \(n\left( A \right) = n \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{n}{{20}}\).

Theo giả thiết, ta có: \(\frac{n}{{20}} = 0,6 \Rightarrow n = 12\). Vậy có 12 viên bi màu đỏ và 8 viên bi màu xanh.