13 bài tập Xác suất của biến cố (có lời giải)
4.6 0 lượt thi 13 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
3 bài tập Biểu đồ tần số tương đối ghép nhóm dạng đoạn thẳng (có lời giải)
6 bài tập Biểu đồ tần số tương đối ghép nhóm dạng cột (có lời giải)
9 bài tập Tần số ghép nhóm, tần số tương đối ghép nhóm (có lời giải)
4 bài tập Biểu đồ tần số tương đối (có lời giải)
Danh sách câu hỏi:
Lời giải
Ta có bảng sau:
|
Dạng hạt
Màu hạt |
\(BB\) |
\(Bb\) |
\(bB\) |
\(bb\) |
|
\(AA\) |
\(\left( {AA;BB} \right)\) |
\(\left( {AA;Bb} \right)\) |
\(\left( {AA;bB} \right)\) |
\(\left( {AA;bb} \right)\) |
|
\(Aa\) |
\[\left( {Aa;BB} \right)\] |
\(\left( {Aa;Bb} \right)\) |
\(\left( {Aa;bB} \right)\) |
\(\left( {Aa;bb} \right)\) |
Gọi \(E\) là biến cố “cây con có hạt vàng nhăn”. Ta có: \[E = \left\{ {\left( {AA,bb} \right);\left( {Aa;bb} \right)} \right\}\].
Có hai kết quả thuận lợi cho biến cố \(E\).
\(\Omega = \left\{ {\left( {AA,BB} \right);\left( {AA,Bb} \right);\left( {AA;bB} \right);\left( {AA,bb} \right);\left( {Aa,BB} \right);\left( {Aa,Bb} \right);\left( {Aa;bB} \right);\left( {Aa,bb} \right)} \right\}\)
Vậy\({\rm{ }}P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{8} = \frac{1}{4}.\)
Lời giải
Hướng dẫn: Viết tập hợp \(\Omega \) và các tập hợp \[E,{\rm{ }}F,{\rm{ }}G\].
Lời giải
Ta có bảng sau:
|
A B |
1 |
2 |
3 |
|
1 |
\(\left( {1;1} \right)\) |
\(\left( {1;2} \right)\) |
\(\left( {1;3} \right)\) |
|
2 |
\(\left( {2;1} \right)\) |
\(\left( {2;2} \right)\) |
\(\left( {2;3} \right)\) |
|
3 |
\(\left( {3;1} \right)\) |
\(\left( {3;2} \right)\) |
\(\left( {3;3} \right)\) |
|
4 |
\(\left( {4;1} \right)\) |
\(\left( {4;2} \right)\) |
\(\left( {4;3} \right)\) |
|
5 |
\(\left( {5;1} \right)\) |
\(\left( {5;2} \right)\) |
\(\left( {5;3} \right)\) |
\(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {{\rm{3}};2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\)
Số phần tử của \(\Omega \) là \(15;n\left( \Omega \right) = 15\)
Số kết quả thuận lợi cho biến cố \(E\) là:\(E = \left\{ {\left( {3;2} \right);\left( {2;3} \right)} \right\} \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{{15}}\)
Ta có: \(F = \left\{ {\left\{ {(1;1);(1;2);(2;1);(1;3);(3;1);(2;2);(4;1)} \right\}} \right\}\)\( \Rightarrow P\left( {\;F} \right) = \frac{7}{{15}}\)
Ta có: \({\rm{G}} = \left\{ {(1;2);(2;1);(2;2);(2;3);(3;2);(4;1);(4;2);(4;3);(5;2)} \right\}\).
Tập hợp \(G\) có 9 phần tử. Vậy \(P\left( G \right) = \frac{9}{{15}} = \frac{3}{5}{\rm{. }}\)
Lời giải
Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.
a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).
b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)
Lời giải
Hướng dẫn: Viết tập hợp các phần tử của không gian mẫu bằng cách liệt kê các kết quả.
Lời giải
Kí hiệu ba bạn An, Bình, Châu là \(A,B,C\). Có các cách xếp ba bạn vào dãy ghế:
\[\left( {A,B,C} \right);\left( {A,C,B} \right);\left( {B,A,C} \right);\left( {B,C,A} \right);\left( {C,A,B} \right);\left( {C,B,A} \right)\].
Vậy \[\Omega = \left\{ {\left( {A,B,C} \right);\left( {A,C,B} \right);\left( {B,A,C} \right);\left( {B,C,A} \right);\left( {C,A,B} \right);\left( {C,B,A} \right)} \right\}\]. Số phần tử của \(\Omega \) là 6.
a) Ta có: \(E = \left\{ {\left( {B,A,C} \right);\left( {B,C,A} \right);\left( {C,A,B} \right);\left( {C,B,A} \right)} \right\}\). Vậy \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{4}{6} = \frac{2}{3}\).
b) Ta có: \[F = \left\{ {\left( {B,A,C} \right);\left( {C,A,B} \right)} \right\}\]. Vậy \(P\left( F \right) = \frac{2}{6} = \frac{1}{3}\).
Lời giải
Hướng dẫn: Xem Ví dụ 7. Số phần tử của tập hợp \(\Omega \) là 6 .
Lời giải
Ta có: \(\Omega = \){Hùng - Dũng; Hùng - Dung; Hùng - Nguyệt; Dũng - Dung; Dũng - Nguyệt; Dung - Nguyệt}.
\({\rm{E}} = \){Hùng - Dung; Hùng - Nguyệt; Dũng - Dung; Dũng - Nguyệt\(\} \). Vậy \(P\left( E \right) = \frac{4}{6} = \frac{2}{3}\).
Ta có: \({\rm{F}} = \){Hùng - Dung; Dũng - Dung; Dung - Nguyệt\(\} \). Vậy \(P\left( F \right) = \frac{3}{6} = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


