Câu hỏi:

29/01/2026 14 Lưu

Một hộp đựng 20 viên bi đỏ và xanh có cùng kích thước, khối lượng. Tìm số viên bi mỗi màu, biết rằng xác suất của biến cố \(A\): “Lấy được bi đỏ” khi thực hiện phép thử lấy ngẫu nhiên một viên bi là \(P\left( A \right) = 0,6\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(n\) là số viên bi đỏ trong hộp. Ta có: \(n\left( A \right) = n \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{n}{{20}}\).

Theo giả thiết, ta có: \(\frac{n}{{20}} = 0,6 \Rightarrow n = 12\). Vậy có 12 viên bi màu đỏ và 8 viên bi màu xanh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn: Viết tập hợp \(\Omega \) và các tập hợp \[E,{\rm{ }}F,{\rm{ }}G\].

Lời giải

Ta có bảng sau:

                           A

B

1

2

3

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

5

\(\left( {5;1} \right)\)

\(\left( {5;2} \right)\)

\(\left( {5;3} \right)\)

\(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {{\rm{3}};2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\)

Số phần tử của \(\Omega \)\(15;n\left( \Omega \right) = 15\)

Số kết quả thuận lợi cho biến cố \(E\) là:\(E = \left\{ {\left( {3;2} \right);\left( {2;3} \right)} \right\} \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{{15}}\)

Ta có: \(F = \left\{ {\left\{ {(1;1);(1;2);(2;1);(1;3);(3;1);(2;2);(4;1)} \right\}} \right\}\)\( \Rightarrow P\left( {\;F} \right) = \frac{7}{{15}}\)

Ta có: \({\rm{G}} = \left\{ {(1;2);(2;1);(2;2);(2;3);(3;2);(4;1);(4;2);(4;3);(5;2)} \right\}\).

Tập hợp \(G\) có 9 phần tử. Vậy \(P\left( G \right) = \frac{9}{{15}} = \frac{3}{5}{\rm{. }}\)

Lời giải

Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.

a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).

b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)