Câu hỏi:

01/02/2026 88 Lưu

Một hộp đựng 20 viên bi đỏ và xanh có cùng kích thước, khối lượng. Tìm số viên bi mỗi màu, biết rằng xác suất của biến cố \(A\): “Lấy được bi đỏ” khi thực hiện phép thử lấy ngẫu nhiên một viên bi là \(P\left( A \right) = 0,6\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(n\) là số viên bi đỏ trong hộp. Ta có: \(n\left( A \right) = n \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{n}{{20}}\).

Theo giả thiết, ta có: \(\frac{n}{{20}} = 0,6 \Rightarrow n = 12\). Vậy có 12 viên bi màu đỏ và 8 viên bi màu xanh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(n\) là số quả bóng màu trắng có trong hộp. Số cách chọn ra ngẫu nhiên 1 quả bóng từ hộp là \(n + 5\).

Do các quả bóng có cùng kích thước và khối lượng nên các quả bóng có cùng khả năng được chọn.

Số kết quả thuận lợi cho biến cố “Lấy được quả bóng màu đỏ” là 5 nên xác suất của biến cố này là \(\frac{5}{{n + 5}}\).

Theo giả thiết, ta có: \(\frac{5}{{n + 5}} = 0,25\) hay \(n + 5 = 20\), ta được \(n = 15\). Vậy có 15 quả bóng màu trắng trong hộp.

Lời giải

a) Kí hiệu quả cầu đen, trắng thứ tự là Đ, T.

Ta có bảng sau:

                  Tấm thẻ

Qủa cầu

A

B

C

1

 

 

 

2

\(\left( {T;A} \right)\)

\(\left( {T;B} \right)\)

\(\left( {T;C} \right)\)

Không gian mẫu có 6 phần tử.

b) Ta có: . Vậy \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{3}{6} = \frac{1}{2}\)

\[F = \left\{ {\left( {{\rm{T}};{\rm{B}}} \right);\left( {{\rm{T}};{\rm{C}}} \right)} \right\}.{\rm{ }}\]Vậy \[P\;\left( F \right) = \frac{2}{6} = \frac{1}{3}.\]