Câu hỏi:

01/02/2026 35 Lưu

Có hai túi I và II, mỗi túi chứa 4 tấm thẻ được đánh số 1 ; 2 ; 3 ; 4. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và nhân hai số ghi trên tấm thẻ với nhau. Tính xác suất của các biến cố sau:

a) \(A\): “Kết quả là một số lẻ”;              b) \(B\): “Kết quả là 1 hoặc một số nguyên tố”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng sau:

                           Túi I

Túi II

1

2

3

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

Ta có: \(n\left( \Omega \right) = 16\).

Lời giải

a) Ta có: \(A = \left\{ {(1;1);(1;3);(3;1);(3;3)} \right\} \Rightarrow n\left( A \right) = 4\). Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{{16}} = \frac{1}{4}\].

b) Ta có: \(B = \left\{ {(1;1);(1;2);(1;3);(2;1);(3;1)} \right\} \Rightarrow n\left( B \right) = 5\). Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{5}{{16}}\).

Nhận xét: Em hãy tính \(P\left( C \right)\), với C là biến cố: “Kết quả là một số chẵn”.

Đáp số: \(P\left( C \right) = \frac{3}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(n\) là số quả bóng màu trắng có trong hộp. Số cách chọn ra ngẫu nhiên 1 quả bóng từ hộp là \(n + 5\).

Do các quả bóng có cùng kích thước và khối lượng nên các quả bóng có cùng khả năng được chọn.

Số kết quả thuận lợi cho biến cố “Lấy được quả bóng màu đỏ” là 5 nên xác suất của biến cố này là \(\frac{5}{{n + 5}}\).

Theo giả thiết, ta có: \(\frac{5}{{n + 5}} = 0,25\) hay \(n + 5 = 20\), ta được \(n = 15\). Vậy có 15 quả bóng màu trắng trong hộp.

Lời giải

a) Kí hiệu quả cầu đen, trắng thứ tự là Đ, T.

Ta có bảng sau:

                  Tấm thẻ

Qủa cầu

A

B

C

1

 

 

 

2

\(\left( {T;A} \right)\)

\(\left( {T;B} \right)\)

\(\left( {T;C} \right)\)

Không gian mẫu có 6 phần tử.

b) Ta có: . Vậy \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{3}{6} = \frac{1}{2}\)

\[F = \left\{ {\left( {{\rm{T}};{\rm{B}}} \right);\left( {{\rm{T}};{\rm{C}}} \right)} \right\}.{\rm{ }}\]Vậy \[P\;\left( F \right) = \frac{2}{6} = \frac{1}{3}.\]