Hình vẽ là biểu đồ thống kê số học sinh tham gia câu lạc bộ cờ vua. Lấy ngẫu nhiên một học sinh trong số này.

Tính xác suất của các biến cố:
a) Lấy được một học sinh nữ lớp 9 .
b) Lấy được một học sinh lớp 6.
c) Lấy được một học sinh nam lớp 7 hoặc lớp 8.
Hình vẽ là biểu đồ thống kê số học sinh tham gia câu lạc bộ cờ vua. Lấy ngẫu nhiên một học sinh trong số này.

Tính xác suất của các biến cố:
a) Lấy được một học sinh nữ lớp 9 .
b) Lấy được một học sinh lớp 6.
c) Lấy được một học sinh nam lớp 7 hoặc lớp 8.
Câu hỏi trong đề: 13 bài tập Xác suất của biến cố (có lời giải) !!
Quảng cáo
Trả lời:
Tổng số học sinh: \(\left( {3 + 4} \right) + \left( {8 + 5} \right) + \left( {6 + 4} \right) + \left( {9 + 7} \right) = 46\). Ta có: \(n\left( \Omega \right) = 46\).
a) \(A\): “Lấy được một học sinh nữ lớp 9” \[ \Rightarrow n\left( A \right) = 7 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{7}{{46}}\].
b) \(B\): “Lấy được một học sinh lớp 6” \( \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3 + 4 = 7\)\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{7}{{46}}\)
c) \(C:\) “Lấy được môt học sinh nam lóp 7 hoặc lớp 8”
\( \Rightarrow n\left( C \right) = 8 + 6 = 14 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{14}}{{46}} = \frac{7}{{23}}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn: Viết tập hợp \(\Omega \) và các tập hợp \[E,{\rm{ }}F,{\rm{ }}G\].
Lời giải
Ta có bảng sau:
|
A B |
1 |
2 |
3 |
|
1 |
\(\left( {1;1} \right)\) |
\(\left( {1;2} \right)\) |
\(\left( {1;3} \right)\) |
|
2 |
\(\left( {2;1} \right)\) |
\(\left( {2;2} \right)\) |
\(\left( {2;3} \right)\) |
|
3 |
\(\left( {3;1} \right)\) |
\(\left( {3;2} \right)\) |
\(\left( {3;3} \right)\) |
|
4 |
\(\left( {4;1} \right)\) |
\(\left( {4;2} \right)\) |
\(\left( {4;3} \right)\) |
|
5 |
\(\left( {5;1} \right)\) |
\(\left( {5;2} \right)\) |
\(\left( {5;3} \right)\) |
\(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {{\rm{3}};2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\)
Số phần tử của \(\Omega \) là \(15;n\left( \Omega \right) = 15\)
Số kết quả thuận lợi cho biến cố \(E\) là:\(E = \left\{ {\left( {3;2} \right);\left( {2;3} \right)} \right\} \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{{15}}\)
Ta có: \(F = \left\{ {\left\{ {(1;1);(1;2);(2;1);(1;3);(3;1);(2;2);(4;1)} \right\}} \right\}\)\( \Rightarrow P\left( {\;F} \right) = \frac{7}{{15}}\)
Ta có: \({\rm{G}} = \left\{ {(1;2);(2;1);(2;2);(2;3);(3;2);(4;1);(4;2);(4;3);(5;2)} \right\}\).
Tập hợp \(G\) có 9 phần tử. Vậy \(P\left( G \right) = \frac{9}{{15}} = \frac{3}{5}{\rm{. }}\)
Lời giải
Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.
a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).
b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

