Câu hỏi:

01/02/2026 29 Lưu

Màu hạt của đậu Hà Lan có hai kiểu hình là vàng và xanh. Có hai gene ứng với hai kiểu hình này allele trội A và allele lặn a. Hình dạng gạt của đậu Hà Lan có hai kiểu hình: hạt trơn và hạt nhăn. Có hai gene ứng với hai kiểu hình này allele trội \(B\) và allele lặn \(b\). Khi cho lai hai cây đậu Hà Lan, cặp gene của cây con được lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ. Phép thử là cho lai hai cây đậu Hà Lan, trong đó cây bố và cây mẹ có kiểu hình là “hạt vàng nhăn”. Hỏi xác suất để cây con có kiểu hình như cây bố và cây mẹ là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng sau:

            Dạng hạt

 

Màu hạt

\(BB\)

\(Bb\)

\(bB\)

\(bb\)

\(AA\)

\(\left( {AA;BB} \right)\)

\(\left( {AA;Bb} \right)\)

\(\left( {AA;bB} \right)\)

\(\left( {AA;bb} \right)\)

\(Aa\)

\[\left( {Aa;BB} \right)\]

\(\left( {Aa;Bb} \right)\)

\(\left( {Aa;bB} \right)\)

\(\left( {Aa;bb} \right)\)

Gọi \(E\) là biến cố “cây con có hạt vàng nhăn”. Ta có: \[E = \left\{ {\left( {AA,bb} \right);\left( {Aa;bb} \right)} \right\}\].

Có hai kết quả thuận lợi cho biến cố \(E\).

\(\Omega = \left\{ {\left( {AA,BB} \right);\left( {AA,Bb} \right);\left( {AA;bB} \right);\left( {AA,bb} \right);\left( {Aa,BB} \right);\left( {Aa,Bb} \right);\left( {Aa;bB} \right);\left( {Aa,bb} \right)} \right\}\)

Vậy\({\rm{ }}P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{8} = \frac{1}{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(n\) là số quả bóng màu trắng có trong hộp. Số cách chọn ra ngẫu nhiên 1 quả bóng từ hộp là \(n + 5\).

Do các quả bóng có cùng kích thước và khối lượng nên các quả bóng có cùng khả năng được chọn.

Số kết quả thuận lợi cho biến cố “Lấy được quả bóng màu đỏ” là 5 nên xác suất của biến cố này là \(\frac{5}{{n + 5}}\).

Theo giả thiết, ta có: \(\frac{5}{{n + 5}} = 0,25\) hay \(n + 5 = 20\), ta được \(n = 15\). Vậy có 15 quả bóng màu trắng trong hộp.

Lời giải

a) Kí hiệu quả cầu đen, trắng thứ tự là Đ, T.

Ta có bảng sau:

                  Tấm thẻ

Qủa cầu

A

B

C

1

 

 

 

2

\(\left( {T;A} \right)\)

\(\left( {T;B} \right)\)

\(\left( {T;C} \right)\)

Không gian mẫu có 6 phần tử.

b) Ta có: . Vậy \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{3}{6} = \frac{1}{2}\)

\[F = \left\{ {\left( {{\rm{T}};{\rm{B}}} \right);\left( {{\rm{T}};{\rm{C}}} \right)} \right\}.{\rm{ }}\]Vậy \[P\;\left( F \right) = \frac{2}{6} = \frac{1}{3}.\]