Bạn Bình gieo một đồng xu cân đối và bạn Thịnh gieo một con xúc xắc cân đối. Tỉnh xác suất của các biến cố sau:
a) E: “Đồng xu xuất hiện mặt sấp và số chấm xuất hiện trên con xúc xắc lớn hơn 3”;
b) F: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc lớn hơn 3”.
Bạn Bình gieo một đồng xu cân đối và bạn Thịnh gieo một con xúc xắc cân đối. Tỉnh xác suất của các biến cố sau:
a) E: “Đồng xu xuất hiện mặt sấp và số chấm xuất hiện trên con xúc xắc lớn hơn 3”;
b) F: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc lớn hơn 3”.
Quảng cáo
Trả lời:
Mô tả không gian mẫu:
|
Thịnh Bình |
1 |
2 |
3 |
4 |
5 |
6 |
|
\(S\) |
\(\left( {S;1} \right)\) |
\(\left( {S;2} \right)\) |
\(\left( {S;3} \right)\) |
\(\left( {S;4} \right)\) |
\(\left( {S;5} \right)\) |
\(\left( {S;6} \right)\) |
|
\(N\) |
\(\left( {N;1} \right)\) |
\(\left( {N;2} \right)\) |
\(\left( {N;3} \right)\) |
\(\left( {N;4} \right)\) |
\(\left( {N;5} \right)\) |
\(\left( {N;6} \right)\) |
Có 12 kết quả có thể là đồng khả năng. \(n(\Omega ) = 12\).
a) Có 3 kết quả thuận lợi cho biến cố \(E\) là (S, 4); (S, 5); (S, 6). Vậy \(P\left( E \right) = \frac{3}{{12}} = \frac{1}{4}\).
b) Có 9 kết quả thuận lợi cho biến cố \(F\) là (N, 1); (N, 2); (N, 3); (N, 4); (N, 5); \((N,6);(S,4);(S,5);(S,6)\).
Vậy \(P\left( F \right) = \frac{9}{{12}} = \frac{3}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:
|
Sơn Hòa |
\(SS\) |
\(SN\) |
\(NS\) |
\(NN\) |
|
1 |
\(1SS\) |
\(1SN\) |
\(1NS\) |
\(1NN\) |
|
2 |
\(2SS\) |
\(2SN\) |
\(2NS\) |
\(2NN\) |
|
3 |
\(3SS\) |
\(3SN\) |
\(3NS\) |
\(3NN\) |
|
4 |
\(4SS\) |
\(4SN\) |
\(4NS\) |
\(4NN\) |
|
5 |
\(5SS\) |
\(5SN\) |
\(5NS\) |
\(5NN\) |
|
6 |
\(6SS\) |
\(6SN\) |
\(6NS\) |
\(6NN\) |
Mỗi ô trong bảng là một kết quả có thể. Có 24 kết quả có thể là đồng khả năng.
a) Có 1 kết quả thuận lợi cho biến cố \(A\) là \(6NN\). Vậy \(P\left( A \right) = \frac{1}{{24}}\).
b) Có 4 kết quả thuận lợi cho biến cố \(B\) là \(1SN,1NS,2SN,2NS\). Vậy \(P\left( B \right) = \frac{4}{{24}} = \frac{1}{6}\).
Lời giải
a) Số học sinh của lớp 9 A là \((4:10).100 = 40\) (học sinh). Số kết quả có thể xảy ra là \(n(\Omega ) = 40\).
b) Số học sinh đạt trên 8 điểm là \((40:100) \cdot (30 + 10) = 16\) (học sinh).
Số kết quả thuận lợi cho biến cố A là \({\rm{n}}({\rm{A}}) = 16\).
Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{{16}}{{40}} = 0,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
