Cô giáo thống kê điểm kiểm tra môn Tin học của các học sinh lớp 9A ở bảng sau:
Điểm số
7
8
9
10
Tần số tương đối
\(20{\rm{\% }}\)
\(40{\rm{\% }}\)
\(30{\rm{\% }}\)
\(10{\rm{\% }}\)
Chọn ngẫu nhiên 1 học sinh lớp 9 A . Biết rằng có 4 học sinh lớp 9 A được 10 điểm.
a) Xác đạnh số kết quả có thể xảy ra của phép thử.
b) Tính xác suất của biến cố A : "Học sinh được chọn đạt trên 8 điểm".
Cô giáo thống kê điểm kiểm tra môn Tin học của các học sinh lớp 9A ở bảng sau:
|
Điểm số |
7 |
8 |
9 |
10 |
|
Tần số tương đối |
\(20{\rm{\% }}\) |
\(40{\rm{\% }}\) |
\(30{\rm{\% }}\) |
\(10{\rm{\% }}\) |
Chọn ngẫu nhiên 1 học sinh lớp 9 A . Biết rằng có 4 học sinh lớp 9 A được 10 điểm.
a) Xác đạnh số kết quả có thể xảy ra của phép thử.
b) Tính xác suất của biến cố A : "Học sinh được chọn đạt trên 8 điểm".
Quảng cáo
Trả lời:
a) Số học sinh của lớp 9 A là \((4:10).100 = 40\) (học sinh). Số kết quả có thể xảy ra là \(n(\Omega ) = 40\).
b) Số học sinh đạt trên 8 điểm là \((40:100) \cdot (30 + 10) = 16\) (học sinh).
Số kết quả thuận lợi cho biến cố A là \({\rm{n}}({\rm{A}}) = 16\).
Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{{16}}{{40}} = 0,4\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:
|
Sơn Hòa |
\(SS\) |
\(SN\) |
\(NS\) |
\(NN\) |
|
1 |
\(1SS\) |
\(1SN\) |
\(1NS\) |
\(1NN\) |
|
2 |
\(2SS\) |
\(2SN\) |
\(2NS\) |
\(2NN\) |
|
3 |
\(3SS\) |
\(3SN\) |
\(3NS\) |
\(3NN\) |
|
4 |
\(4SS\) |
\(4SN\) |
\(4NS\) |
\(4NN\) |
|
5 |
\(5SS\) |
\(5SN\) |
\(5NS\) |
\(5NN\) |
|
6 |
\(6SS\) |
\(6SN\) |
\(6NS\) |
\(6NN\) |
Mỗi ô trong bảng là một kết quả có thể. Có 24 kết quả có thể là đồng khả năng.
a) Có 1 kết quả thuận lợi cho biến cố \(A\) là \(6NN\). Vậy \(P\left( A \right) = \frac{1}{{24}}\).
b) Có 4 kết quả thuận lợi cho biến cố \(B\) là \(1SN,1NS,2SN,2NS\). Vậy \(P\left( B \right) = \frac{4}{{24}} = \frac{1}{6}\).
Lời giải
Gọi N là tổng số học sinh của trường.
Số học sinh khối 6 của trường là \(0,28\;{\rm{N}}\). Số học sinh khối 7 của trường là \(0,25\;{\rm{N}}\).
Khi thực hiện phép thử chọn ngẫu nhiên 1 học sinh của trường, số kết quả có thể xảy ra là \({\rm{n}}(\Omega ) = {\rm{N}}\).
Số kết quả thuận lợi cho biến cố A là \({\rm{n}}({\rm{A}}) = 0,28\;{\rm{N}}\).
Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{{0,28\;{\rm{N}}}}{{\;{\rm{N}}}} = 0,28\).
Số kết quả thuận lợi cho biến cố B là \({\rm{n}}({\rm{B}}) = 0,25\;{\rm{N}}\).
Xác suất của biến cố B là \({\rm{P}}({\rm{B}}) = \frac{{0,25\;{\rm{N}}}}{{\;{\rm{N}}}} = 0,25\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
