Cho hình nón có chiều cao bằng bán kính đáy và có thể tích bằng \[9\pi .\] Chiều cao của hình nón đó bằng
Quảng cáo
Trả lời:
Chọn A
Vì chiều cao của hình nón bằng bán kính đáy nên ta có \[h = r.\]
Công thức tính thể tích của hình nón là: \(V = \frac{1}{3}\pi {r^2}h\)
Suy ra \[\frac{1}{3}\pi {r^2}h = 9\pi .\]
Hay \[\frac{1}{3}\pi {h^2} \cdot h = 9\pi .\]
Do đó \[{h^3} = 27\] nên \[h = \sqrt[3]{{27}} = 3.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có: \[{l^2} = {h^2} + {r^2}\], suy ra \[l = \sqrt {{h^2} + {r^2}} .\]
Câu 2
Lời giải
Chọn D
Diện tích toàn phần của hình nón là: \[{S_{tp}} = \pi r\left( {l + r} \right).\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.