Câu hỏi:

01/02/2026 8 Lưu

Hai túi I và II chứa các viên bi có cùng kích thước. Túi I chứa 4 viên bi được ghi các số 1,2,3,4. Túi II chứa 5 viên bi được ghi các số 1,2,3,4,5. Bạn Mai lấy ngẫu nhiên một viên bi từ túi I và bạn Tuấn lấy ngẫu nhiên một viên bi từ túi II. Tỉnh xác suất của các biến cố sau:

a) A: “Hai số ghi trên hai viên bi khác nhau”;

b) B: “Hai số ghi trên hai viên bi chênh nhau 1 đơn vị”;

c) C: “Hai số ghi trên hai viên bi chênh nhau 3 đơn vị”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mô tả không gian mẫu:

               Mai

Tuấn

1

2

3

4

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

\(\left( {1;4} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

\(\left( {2;4} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

\(\left( {3;4} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

\(\left( {4;4} \right)\)

5

\(\left( {5;1} \right)\)

\(\left( {5;2} \right)\)

\(\left( {5;3} \right)\)

\(\left( {5;4} \right)\)

Có 20 kết quả có thể là đồng khả năng \[n\left( \Omega \right) = 20\].

a) Bỏ đi 4 ô \((1,1);(2,2);(3,3);(4,4)\), ta có \(20 - 4 = 16\) kết quả thuận lợi cho biến cố \(A\). Vậy \(P\left( A \right) = \frac{{16}}{{20}} = \frac{4}{5}\).

b) Có 7 kết quả thuận lợi cho biến cố \(B\)\((1,2);(2,1);(2,3);(3,2);(3,4)\); \((4,3);(5,4)\). Vậy \(P\left( B \right) = \frac{7}{{20}}\).

c) Có 3 kết quả thuận lợi cho biến cố \(C\)\((1,4);(4,1);(5,2)\). Vậy \(P\left( C \right) = \frac{3}{{20}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:

              Tùng

An

\(a\)

\(b\)

\(c\)

\(d\)

\(e\)

\(S\)

\(Sa\)

\(Sb\)

\(Sc\)

\(Sd\)

\(Se\)

\(N\)

\(Na\)

\(Nb\)

\(Nc\)

\(Nd\)

\(Ne\)

Mỗi ô trong bảng là một kết quả có thể. Có 10 kết quả có thể là đồng khả năng.

a) Có 3 kết quả thuận lợi cho biến cố \(E\) là \(Sc,Sd,Se\). Vậy \(P\left( E \right) = \frac{3}{{10}}\).

b) Có 6 kết quả thuận lợi cho biến cố \(F\) là \(Na,Nb,Nc,Nd,Ne,Sb\). Vậy \(P\left( F \right) = \frac{6}{{10}} = \frac{3}{5}\).

Lời giải

           Bình

Nam

1

2

3

4

5

6

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

\(\left( {1;4} \right)\)

\(\left( {1;5} \right)\)

\(\left( {1;6} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

\(\left( {2;4} \right)\)

\(\left( {2;5} \right)\)

\(\left( {2;6} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

\(\left( {3;4} \right)\)

\(\left( {3;5} \right)\)

\(\left( {3;6} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

\(\left( {4;4} \right)\)

\(\left( {4;5} \right)\)

\(\left( {4;6} \right)\)

Có 24 kết quả có thể là đồng khả năng \(n\left( \Omega \right) = 24\).

a) Có 12 kết quả thuận lợi cho biến cố \(E\)\((1,2);(1,3);(1,5);(2,1);(2,4)\);\((2,6);(3,1);(3,4);(3,6);(4,2);\) \((4,3);(4,5)\). Vậy \(P\left( E \right) = \frac{{12}}{{24}} = \frac{1}{2}\).

b) Có 10 kết quả thuận lợi cho biến cố \(F\)\((1,6);(2,5);(2,6);(3,4);(3,5)\); \((3,6);(4,3);(4,4);(4,5);(4,6)\).

 Vậy \(P\left( F \right) = \frac{{10}}{{24}} = \frac{5}{{12}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP