Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau:
E: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 11”;
F: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 hoặc 9”;
G: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 6”.
Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau:
E: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 11”;
F: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 hoặc 9”;
G: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 6”.
Câu hỏi trong đề: 30 bài tập Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
|
Xúc xắc II Xúc xắc I |
1 |
2 |
3 |
4 |
5 |
6 |
|
1 |
\(\left( {1;1} \right)\) |
\(\left( {1;2} \right)\) |
\(\left( {1;3} \right)\) |
\(\left( {1;4} \right)\) |
\(\left( {1;5} \right)\) |
\(\left( {1;6} \right)\) |
|
2 |
\(\left( {2;1} \right)\) |
\(\left( {2;2} \right)\) |
\(\left( {2;3} \right)\) |
\(\left( {2;4} \right)\) |
\(\left( {2;5} \right)\) |
\(\left( {2;6} \right)\) |
|
3 |
\(\left( {3;1} \right)\) |
\(\left( {3;2} \right)\) |
\(\left( {3;3} \right)\) |
\(\left( {3;4} \right)\) |
\(\left( {3;5} \right)\) |
\(\left( {3;6} \right)\) |
|
4 |
\(\left( {4;1} \right)\) |
\(\left( {4;2} \right)\) |
\(\left( {4;3} \right)\) |
\(\left( {4;4} \right)\) |
\(\left( {4;5} \right)\) |
\(\left( {4;6} \right)\) |
|
5 |
\(\left( {5;1} \right)\) |
\(\left( {5;2} \right)\) |
\(\left( {5;3} \right)\) |
\(\left( {5;4} \right)\) |
\(\left( {5;5} \right)\) |
\(\left( {5;6} \right)\) |
|
6 |
\(\left( {6;1} \right)\) |
\(\left( {6;2} \right)\) |
\(\left( {6;3} \right)\) |
\(\left( {6;4} \right)\) |
\(\left( {6;5} \right)\) |
\(\left( {6;6} \right)\) |
Ta có: \(n\left( \Omega \right) = 36\).
\[E = \left\{ {\left( {5;6} \right);\left( {6;5} \right)} \right\} \Rightarrow n\left( E \right) = 2\]. Vậy \(P\left( E \right) = \frac{2}{{36}} = \frac{1}{{18}}\).
\[{\rm{F}} = \left\{ {\left( {2;6} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {5;3} \right);\left( {5;4} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{F}} \right) = 7\]. Vậy \(P\left( F \right) = \frac{7}{{36}}\).
\(G = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {3;2} \right);\left( {4;1} \right)} \right\} \Rightarrow n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.
a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega \right) = 10\]
b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).
\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].
Lời giải
a) Bảng tần số tương đối:
|
Đội tuyển |
Thái Lan |
Malaysia |
Myanmar |
Việt Nam |
Indonesia |
|
Tần số tương đối |
47% |
19% |
16% |
9% |
9% |
b) Bảng tần số:
|
Đội tuyển |
Thái Lan |
Malaysia |
Myanmar |
Việt Nam |
Indonesia |
|
Tần số |
15 |
6 |
5 |
3 |
3 |
c) Vẽ biểu đồ tần số dạng cột biểu diễn bảng tần số thu được ở câu b theo các bước đã học.
d) Thái Lan là đội vô địch bóng đá nam SEA Games nhiều lần nhất, với 15 lần.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
