Câu hỏi:

01/02/2026 8 Lưu

Trong một trò chơi, có hai bánh xe, mỗi bánh xe được gắn vào trục quay có mũi tên ở tâm. Bánh xe thứ nhất được chia làm bốn hình quạt như nhau và sơn các màu: trắng, đỏ, xanh, vàng. Bánh xe thứ hai được chia làm ba hnh quạt như nhau và sơn các màu: đỏ, xanh, vàng. Người chơi quay hai bánh xe. Người chơi đạt giải nhất nếu hai mũi tên dừng lại ở hai hình quạt màu đỏ, đạt giải nhì nếu hai mũi tên dừng lại ở hai hình quạt cùng màu và đạt giải ba nếu có đúng một mũi tên dừng ở hình quạt màu đỏ.

Trong một trò chơi, có hai bánh xe, mỗi bánh xe được gắn vào trục quay có mũi tên ở tâm. Bánh xe thứ nhất được chia làm bốn hình quạt như nhau và sơn các màu: trắng, đỏ, xanh, vàng. (ảnh 1)

Tính xác suất của các biến cố sau:

a) E: “Người chơi đạt giải nhất”;

b) F: “Người chơi đạt giải nhì”;

c) G: “Người chơi đạt giải ba”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Kí hiệu các màu trắng, đỏ, xanh, vàng lần lượt là .

Không gian mẫu .

Có 12 kết quả có thể là đồng khả năng.

a) Có 1 kết quả thuận lợi cho biến cố \(E\) là ĐĐ. Vậy \(P\left( E \right) = \frac{1}{{12}}\).

b) Có 3 kết quả thuận lợi cho biến cố \(F\) là. Vậy \(P\left( F \right) = \frac{3}{{12}} = \frac{1}{4}\).

c) Có 5 kết quả thuận lợi cho biến cố \(G\) là . Vậy \(P\left( G \right) = \frac{5}{{12}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.

a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega  \right) = 10\]

b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).

\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].

Lời giải

a) Số kết quả có thề xảy ra khi bạn An chọn 1 viên bi từ hộp thứ nhất là 9.

Số kết quả thuận lợi cho biến cố A: "Bạn An chọn được viên bi màu xanh" là 3 .

Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{3}{9} = \frac{1}{3}\).

b) Gọi \(x\) là số viên bi đỏ trong hộp thứ hai. Số kết quả có thể xảy ra khi Thắng chọn 1 viên bi từ hộp thứ hai là \(x + 5\). Số kết quả thuận lợi cho biến cố B: "Bạn Thắng chọn được viên bi màu xanh" là 5 .

Xác suất của biến cố B là \(P(B) = \frac{5}{{x + 5}}.\)Do \(P(A) = P(B)\) nên \(\frac{5}{{x + 5}} = \frac{1}{3}\).

Giải phương trình này, ta được \(x = 10\).

Vậy trong hộp thứ hai có 10 viên bi đỏ.