Câu hỏi:

02/02/2026 4 Lưu

Cho điểm \(A\left( {0;1} \right)\), đường thẳng \(d\) đi qua điểm \(\left( {0; - 1} \right)\) và song song với trục \(Ox\). Tập hợp các điểm \(M\) trên mặt phẳng tọa độ sao cho khoảng cách từ \(M\) đến \(A\) bằng khoảng cách từ \(M\) đến đường thẳng \(d\)

A. Parobol \(y = \frac{1}{2}{x^2}\).                                    
B. Đường thẳng \(y = \frac{1}{4}x\).
C. Đường thẳng \(y = \frac{1}{2}x\).       
D. Parabol \(y = \frac{1}{4}{x^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Thay \(y = 4\)vào \(y = 2{x^2}\)ta đ (ảnh 1)

Gọi tọa độ của điểm \(M\) là \(\left( {x;y} \right)\).

Đường thẳng \(d\) đi qua điểm \(\left( {0; - 1} \right)\) và song song với trục \(Ox\)có dạng \(\left( d \right):y + 1 = 0\).

Khoảng cách từ \(M\) đến \(A\) là \(MA = \sqrt {{{\left( {0 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} \)\( = \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} \)

Khoảng cách từ \(M\) đến đường thẳng \(d\) là \(\frac{{\left| {y + 1} \right|}}{{\sqrt {{1^2}} }} = \left| {y + 1} \right|\)

Để khoảng cách từ \(M\) đến \(A\) bằng khoảng cách từ \(M\) đến đường thẳng \(d\) thì \(\sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  = \left| {y + 1} \right|\)\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {\left( {y + 1} \right)^2}\)\( \Leftrightarrow {x^2} + {y^2} - 2y + 1 = {y^2} + 2y + 1\)\( \Leftrightarrow 4y = {x^2}\)\( \Leftrightarrow y = \frac{1}{4}{x^2}\).

Vậy tập hợp các điểm \(M\)là một parabol có phương trình \(y = \frac{1}{4}{x^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Biết rằng đồ thị hàm số \[y = a{x^2}\left( {a \ne 0} \right)\] đi qua điểm \[M\left( {\frac{1}{2}\,;\,\frac{{ - 1}}{2}} \right)\]. Giá trị của \[a\]

A. \(1\).                      
B. \( - 1\).                 
C. \(2\).                           
D. \( - 2\).

Lời giải

Chọn D

Vì điểm \[M\left( {\frac{1}{2};\,\frac{{ - 1}}{2}} \right)\] thuộc đồ thị hàm số \[y = a{x^2}\left( {a \ne 0} \right)\] nên

\[\frac{{ - 1}}{2} = a.{\left( {\frac{1}{2}} \right)^2}\]\[ \Leftrightarrow a =  - 2\] (thỏa mãn).

Vậy \[a =  - 2\].

Câu 2

A. \(y = {x^2}\).        
B. \(y = 2{x^2}\).    
C. \(y = \frac{1}{2}{x^2}\).  
D. \(y = - {x^2}\).

Lời giải

Chọn C

Cách 1: Parabol đã cho có dạng là đồ thị hàm số \[y = a{x^2}\left( {a > 0} \right)\].

Do parabol này đi qua điểm \[A\left( { - 2\,;\,2} \right)\] nên \[a.{\left( { - 2} \right)^2} = 2\]\[ \Leftrightarrow a = \frac{1}{2}\] ( thỏa mãn \[a > 0\]).

Vậy hàm số cần tìm là \[y = \frac{1}{2}{x^2}\].

Cách 2: Parabol đã cho có dạng là đồ thị hàm số \[y = a{x^2}\left( {a > 0} \right)\] nên ta có thể loại ngay phương án          D.

Thử trực tiếp các phương án còn lại, nhận thấy hàm số có đồ thị đi qua điểm \[A\left( { - 2\,;\,2} \right)\] là \[y = \frac{1}{2}{x^2}\].

Câu 3

A. Hình \[b)\].           
B. Hình \[d)\].         
C. Hình \[a)\].                        
D. Hình \[c)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 4;\,\, - 4} \right);\,\,\left( { - 2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
B. \(\left( { - 4;\,\,4} \right);\,\,\left( { - 2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
C. \(\left( { - 4;\,\, - 4} \right);\,\,\left( { - 2;\,\,1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
D. \(\left( { - 4;\,\, - 4} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\,1} \right);\,\,\left( {4;\,\, - 4} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {\sqrt 3 ;\, - 6} \right);\,\,\left( { - \sqrt 3 ;\, - 6} \right).\)             
B. \(\left( { - 6;\,\sqrt 3 } \right);\,\,\left( { - 6;\, - \sqrt 3 } \right).\)
C. \(\left( {\sqrt 3 ;\, - 6} \right).\)                                                     
D. \(\left( { - 72; - 6} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m < - 2.\)           
B. \(m \le - 2.\)       
C. \(m > - 2.\)                             
D. \(m \ge - 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m = 1.\)              
B. \(m = 5.\)            
C. \(m = 2.\)                                  
D. \(m = 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP