Gọi \(I\) là một điểm tùy ý nằm trên parabol \(y = {x^2}\) và \(N\) là điểm đối xứng với điểm \(O\) (gốc tọa độ) qua điểm \(I\). Khi \(I\) di chuyển trên parabol thì \(N\) di chuyển trên đường nào?
Quảng cáo
Trả lời:
Chọn B

Gọi tọa độ của \(I\) là \(\left( {x;y} \right)\), tọa độ của \(N\) là \(\left( {x';y'} \right)\).
Vì \(N\) đối xứng với \(O\) qua \(I\) nên \(I\) là trung điểm của \(ON\)\( \Rightarrow x = \frac{{x'}}{2}\); \(y = \frac{{y'}}{2}\).
Điểm \(I\) thuộc parabol nên ta có \(y = {x^2}\)\( \Rightarrow \frac{{y'}}{2} = {\left( {\frac{{x'}}{2}} \right)^2}\)\( \Leftrightarrow y' = \frac{{x{'^2}}}{2}\).
Vậy điểm \(N\) di chuyển trên parabol \(y = \frac{1}{2}{x^2}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Vì điểm \[M\left( {\frac{1}{2};\,\frac{{ - 1}}{2}} \right)\] thuộc đồ thị hàm số \[y = a{x^2}\left( {a \ne 0} \right)\] nên
\[\frac{{ - 1}}{2} = a.{\left( {\frac{1}{2}} \right)^2}\]\[ \Leftrightarrow a = - 2\] (thỏa mãn).
Vậy \[a = - 2\].
Câu 2
Lời giải
Chọn C
Cách 1: Parabol đã cho có dạng là đồ thị hàm số \[y = a{x^2}\left( {a > 0} \right)\].
Do parabol này đi qua điểm \[A\left( { - 2\,;\,2} \right)\] nên \[a.{\left( { - 2} \right)^2} = 2\]\[ \Leftrightarrow a = \frac{1}{2}\] ( thỏa mãn \[a > 0\]).
Vậy hàm số cần tìm là \[y = \frac{1}{2}{x^2}\].
Cách 2: Parabol đã cho có dạng là đồ thị hàm số \[y = a{x^2}\left( {a > 0} \right)\] nên ta có thể loại ngay phương án D.
Thử trực tiếp các phương án còn lại, nhận thấy hàm số có đồ thị đi qua điểm \[A\left( { - 2\,;\,2} \right)\] là \[y = \frac{1}{2}{x^2}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

