Câu hỏi:

03/02/2026 3 Lưu

Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?

A. \(BD = \frac{{BC + AB - AC}}{2}\).  
B. \(BC = \frac{{BD + AB - AC}}{2}\).
C. \(BD = \frac{{BC + AB + AC}}{2}\). 
D. \(BD = \frac{{BC - AB + AC}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có: \[A{B^2} + A{C^2 (ảnh 1)

Gọi \[E,{\rm{ }}F\] là tiếp điểm của đường tròn \[\left( I \right)\] với các cạnh \[AB,{\rm{ }}AC\].

Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AE = AF;{\rm{ }}BE = BD;\,\,CD = CF\].

Do đó 2BD=BD+BE =BCCD+ABAE

=BC+ABCD+AE =BC+ABCF+AF

=BC+ABAC

Suy ra \[BD = \frac{{BC + AB - AC}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 1 cm.                     
B. 2 cm.                   
C. 3 cm.                             
D. 4 cm.

Lời giải

Chọn B

Vì \[AC\] bằng cạnh của hình vuôn (ảnh 1)

Đường tròn \[\left( {I;{\rm{ }}r} \right)\] tiếp xúc với các cạnh \[AB,{\rm{ }}AC,{\rm{ }}BC\] theo thứ tự \[M,{\rm{ }}N,{\rm{ }}P\].

Ta có: SAIB=12IMAB=12rAB1

SAIC=12INAC=12rAC2

SBIC=12r.BC3

Cộng vế theo vế ở các biểu thức \(\left( 1 \right),\,\,\left( 2 \right),\,\,\left( 3 \right)\), ta được:

\(\frac{{{S_{AIB}} + {S_{AIC}} + {S_{BIC}}}}{{{S_{ABC}}}} = \frac{1}{2}r\left( {AB + AC + BC} \right)\).

Mà \({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.6.8 = 24\) (cm2), \(BC = \sqrt {{6^2} + {8^2}}  = 10\) (cm)

Nên ta có: \(24 = \frac{1}{2}r \cdot \left( {6 + 8 + 10} \right)\) hay \(\frac{1}{2}r \cdot 12 = 24\).

Do đó \(r = 2\,\,{\rm{cm}}\).

Câu 2

A. \(\frac{R}{{\sqrt 3 }}\).                       
B. \(R\sqrt 3 \).                            
C. \(R\sqrt 6 \).      
D. \(3R\).

Lời giải

Chọn B

i tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\] (ảnh 1)

Gọi tam giác đều \[ABC\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\]

Khi đó \[O\] là trọng tâm tam giác \[ABC\].

Gọi \[AH\] là đường trung tuyến.

Suy ra \(R = AO = \frac{2}{3}AH\) hay \(AH = \frac{{3R}}{2}\).

Áp dụng định lý Pythagore với tam giác \[ABH\] vuông tại \[H\], ta có: \(A{H^2} = A{B^2} - B{H^2}\)

Khi đó \[AH = \sqrt {A{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\].

Do đó \(\frac{{3R}}{2} = \frac{{a\sqrt 3 }}{2}\) hay \(a = R\sqrt 3 \).

Câu 3

A. 2,5 cm.                  
B. \[1,5{\rm{ }}{\mathop{\rm cm}\nolimits} .\]       
C. 2 cm.                   
D. \(\sqrt 3 {\rm{ cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. tiếp xúc với tất cả các cạnh của đa giác đó.
B. đi qua tất cả các đỉnh của đa giác đó.
C. cắt tất cả các cạnh của đa giác đó.
D. đi qua tâm của đa giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. trung trực.             
B. phân giác trong.  
C. phân giác ngoài.                         
D. đường cao.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. trung trực.             
B. đường cao.          
C. phân giác ngoài.                         
D. phân giác trong.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Mỗi tam giác luôn có một đường tròn ngoại tiếp.
B. Mỗi tam giác luôn có một đường tròn nội tiếp.
C. Cả A và B đều đúng.
D. Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP