Cho đường tròn \(\left( {O;R} \right)\) và hai đường kính vuông góc \(AB,CD\). Trên bán kính \(AO\) lấy đoạn \(AI = \frac{{2AO}}{3}\), vẽ tia \(CI\) cắt \(\left( O \right)\) tại \(E\). Tính \(R\) theo \(CE\)

Cho đường tròn \(\left( {O;R} \right)\) và hai đường kính vuông góc \(AB,CD\). Trên bán kính \(AO\) lấy đoạn \(AI = \frac{{2AO}}{3}\), vẽ tia \(CI\) cắt \(\left( O \right)\) tại \(E\). Tính \(R\) theo \(CE\)

Quảng cáo
Trả lời:
Ta có \(AI = \frac{{2AO}}{3} = \frac{{2R}}{3} \Rightarrow OI = R - \frac{{2R}}{3} = \frac{R}{3}\)
\(\Delta OCI\) vuông tại \(O\), ta có:
\(CI = \sqrt {O{C^2} + O{I^2}} = \sqrt {{R^2} + {{\left( {\frac{R}{3}} \right)}^2}} = \frac{{R\sqrt {10} }}{3}\)
\(\Delta CED\) nội tiếp đường tròn \(O\) có cạnh \(CD\) là đường kính \( \Rightarrow \Delta CED\) vuông tại \(E\)
Hai tam giác vuông \(OCI\) và \(CED\) có \(\widehat C:chung\)
\( \Rightarrow \Delta COI \sim \Delta CED \Rightarrow \frac{{CO}}{{CE}} = \frac{{CI}}{{CD}} \Rightarrow CE = \frac{{CO.CD}}{{CI}}\)
\( = \frac{{R.2R}}{{R\frac{{\sqrt {10} }}{3}}} = \frac{{6R}}{{\sqrt {10} }} = \frac{{3R\sqrt {10} }}{5}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[\begin{array}{l}a = R\sqrt 2 = 3\sqrt 2 \left( {cm} \right)\\S = {a^2} = {\left( {3\sqrt 2 } \right)^2} = 18\left( {c{m^2}} \right)\end{array}\]
Lời giải
Ta có tam giác ABC đều.
Gọi O là trực tâm của tam giác đồng thời là giao điểm ba đường phân giác trong.
Vậy O là tâm của đường tròn nội tiếp tam giác đều ABC . Ta có:

Xét tam giác AHB vuông tại H có cạnh huyền
Theo định lí về hệ thức lượng trong tam giác vuông, ta có:
(Lưu ý: Có thể kết luận ngay \({\rm{AH}} = \frac{{{\rm{a}}\sqrt 3 }}{2}\) vì đều cạnh a ).
Mặt khác tam giác ABC đều nên trực tâm O cũng là trọng tâm \( \Rightarrow {\rm{OH}} = \frac{1}{3}{\rm{AH}} = \frac{1}{3} \cdot \frac{{{\rm{a}}\sqrt 3 }}{2} = \frac{{{\rm{a}}\sqrt 3 }}{6}.\)
Vậy bán kính đường tròn nội tiếp tam giác đều cạnh a bằng \(\frac{{{\rm{a}}\sqrt 3 }}{6}\).
Nhận xét: Trong tam giác đều tâm đường tròn nội tiếp và tâm đường tròn ngoại tiếp trùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.