Câu hỏi:

03/02/2026 7 Lưu

Cho nửa đường tròn tâm \[O\], đường kính \[AB = 2R\]. Trên tia đối của tia \[AB\] lấy điểm \[E\] (khác với điểm \[A\]). Tiếp tuyến kẻ từ điểm \[E\] cắt các tiếp tuyến kẻ từ điểm \[A\]\[B\] của nửa đường tròn \[\left( O \right)\] lần lượt tại \[C\]\[D\]. Gọi \[M\] là tiếp điểm của tiếp tuyến kẻ từ điểm \[E\]. Trong các khẳng định sau, khẳng định nào là sai?

A. Tứ giác \[OACM\] là tứ giác nội tiếp. 
B. Tứ giác \[OBDM\] là tứ giác nội tiếp.
C. Tứ giác \[ACDB\] là hình thang vuông.                       
D. Tứ giác \[ACDB\] là tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Vì \[AC\] là tiếp tuyến của \[\left (ảnh 1)

Vì \[AC\] là tiếp tuyến của \[\left( O \right)\] nên \(OA \bot AC\) hay \(\widehat {OAC} = 90^\circ \).

Vì \[MC\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MC\) hay \(\widehat {OMC} = 90^\circ \).

Suy ra \(\widehat {OAC} + \widehat {OMC} = 180^\circ \). Do đó \[OACM\] là tứ giác nội tiếp.

Vì \[BD\] là tiếp tuyến của \[\left( O \right)\] nên \(OB \bot BD\) hay \(\widehat {OBD} = 90^\circ \)

Vì \[MD\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MD\) hay \(\widehat {OMD} = 90^\circ \)

Suy ra \(\widehat {OBD} + \widehat {OMD} = 180^\circ \). Do đó \[OMDB\] là tứ giác nội tiếp.

Vậy đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Tứ giác \[ABOC\]là hình thoi.             
B. Tứ giác \[ABOC\] nội tiếp.
C. Tứ giác \[ABOC\] không nội tiếp.       
D. Tứ giác \[ABOC\] là hình bình hành.

Lời giải

Chọn B

Ta có \[AB\] và \[AC\] là hai tiếp tu (ảnh 1)

Ta có \[AB\] và \[AC\] là hai tiếp tuyến cắt nhau suy ra \[AB = AC\] (tính chất hai tiếp tuyến cắt nhau).

Xét tứ giác \[ABOC\] có:

\(AB = AC\) và \[OB = OC\].

Suy ra tứ giác \[ABOC\] chưa là hình thoi và không là hình bình hành, do đó đáp án A, D sai.

Có \(\widehat {ABO} = 90^\circ \) (do \[AB\] là tiếp tuyến của \[\left( O \right)\])

\(\widehat {ACO} = 90^\circ \) (do \[AC\] là tiếp tuyến của \[\left( O \right)\])

Suy ra \(\widehat {ABO} + \widehat {ACO} = 180^\circ \)

Suy ra tứ giác \[ABOC\] là tứ giác nội tiếp.

Lời giải

Chọn C

– Hình 1: Tứ giác \(ABCD\) có \(\widehat A + \widehat C = 115^\circ + 75^\circ = 190^\circ \ne 180^\circ \) nên không phải tứ giác nội tiếp.

– Hình 2: Tứ giác \(EFGH\) có \(\widehat F + \widehat H = 85^\circ + 92^\circ = 177^\circ \ne 180^\circ \) nên không phải tứ giác nội tiếp.

– Hình 3: Tứ giác \(MNPQ\) có các đỉnh nằm trên đường tròn \(\left( O \right)\) nên là tứ giác nội tiếp.

– Hình 4: Tứ giác \(IKSR\) chỉ số đo của góc \(K\) nên chưa đủ điều kiện để kết luận tứ giác nội tiếp hay không.

Vậy Hình 3 là tứ giác nội tiếp.

Câu 3

A. Tứ giác \[BEFC\] là tứ giác nội tiếp.   
B. Tứ giác \[BEFC\] không nội tiếp.
C. Tứ giác \[AFHE\] là hình vuông.         
D. Tứ giác \[AFHE\] không nội tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hình I                   
B. Hình II
C. Hình III                 
D. Hình IV

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Mọi tứ giác đều nội tiếp được đường tròn.
B. Trong một tứ giác nội tiếp, tổng số đo hai góc đối bằng \[{90^0}\].
C. Tứ giác có tổng hai góc bằng 1800 thì tứ giác đó nội tiếp.
D. Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới hai góc bằng nhau thì tứ giác đó nội tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP