Câu hỏi:

03/02/2026 5 Lưu

Chứng minh rằng tổng độ dài các cạnh của một ngũ giác lồi bé hơn tổng độ dài các đường chéo của nó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chứng minh rằng tổng độ dài các cạnh của một ngũ giác lồi bé hơn tổng độ dài các đường chéo của nó.  (ảnh 1)

Áp dụng tính chất về quan hệ các cạnh của tam giác, ta có:

\(AB + BC + CD + DE + EA < \left( {AN + NB} \right) + \left( {BP + PC} \right)\)   

 \( + \left( {CQ + QD} \right) + \left( {DK + KE} \right) + \left( {EM + MA} \right)\) \(\left( 1 \right)\)

Mặt khác: \(AN + PC < AC\);\(BP + DQ < BD\);\(CQ + KE < CE\);\(DK + MA < DA\);\(EM + NB < EB\)\(\left( 2 \right)\)

Từ \(\left( 1 \right)\)và \(\left( 2 \right)\)suy ra điều phải chứng minh

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích là \(259,8:6 = 43,3\left( {\;c{m^2}} \right)\). Ta có \(\widehat {FOE} = 360^\circ :6 = 60^\circ \).

Do đó \(\widehat {OEH} = 60^\circ \) ( \(\Delta OFE\) là tam giác đều). Diện tích \(\Delta OFE:S = \frac{1}{2}.OH.EF = \frac{1}{2}EF.\sqrt {O{E^2} - H{E^2}} \).

\(OE = EF;HE = \frac{1}{2}EF\).

Nên \(S = \frac{1}{2} \cdot EF \cdot \sqrt {F{E^2} - {{\left( {\frac{1}{2}EF} \right)}^2}} = \frac{1}{2}.EF.\sqrt {F{E^2} - \frac{1}{4}F{E^2}} = \frac{1}{2}.EF.\sqrt {\frac{3}{4}F{E^2}} = \frac{{F{E^2}}}{4}\sqrt 3 \).

Suy ra \(43,3 = \frac{{F{E^2}}}{4}\sqrt 3 \Rightarrow F{E^2} = \frac{{43,3.4}}{{\sqrt 3 }} \approx 100 \Rightarrow FE = \sqrt {100} = 10\left( {\;cm} \right)\).

Lưu ý: Diện tích tam giác đều có cạnh \(a\)\(S = \frac{{{a^2}\sqrt 3 }}{4}\).

Lời giải

Bài 5.	Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)

Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).

Từ đó \[AM = AN\]\[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP