Câu hỏi:

03/02/2026 5 Lưu

Một cái gương hình lục giác đều có các đỉnh nằm trên một hình tròn bằng gỗ đường kính 20 cm. Tính diện tích gương.

Một cái gương hình lục giác đều có các đỉnh nằm trên một hình tròn bằng gỗ đường kính 20 cm. Tính diện tích gương. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bán kính hình tròn: \(20:2 = 10\left( {\;cm} \right)\).

\(\Delta OAB\) là tam giác đều nên diện tích tam giác là: \(\frac{{{{10}^2}\sqrt 3 }}{4} = 25\sqrt 3 \left( {\;c{m^2}} \right)\).

Diện tích gương là \(25\sqrt 3 .6 \approx 260\left( {\;c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích là \(259,8:6 = 43,3\left( {\;c{m^2}} \right)\). Ta có \(\widehat {FOE} = 360^\circ :6 = 60^\circ \).

Do đó \(\widehat {OEH} = 60^\circ \) ( \(\Delta OFE\) là tam giác đều). Diện tích \(\Delta OFE:S = \frac{1}{2}.OH.EF = \frac{1}{2}EF.\sqrt {O{E^2} - H{E^2}} \).

\(OE = EF;HE = \frac{1}{2}EF\).

Nên \(S = \frac{1}{2} \cdot EF \cdot \sqrt {F{E^2} - {{\left( {\frac{1}{2}EF} \right)}^2}} = \frac{1}{2}.EF.\sqrt {F{E^2} - \frac{1}{4}F{E^2}} = \frac{1}{2}.EF.\sqrt {\frac{3}{4}F{E^2}} = \frac{{F{E^2}}}{4}\sqrt 3 \).

Suy ra \(43,3 = \frac{{F{E^2}}}{4}\sqrt 3 \Rightarrow F{E^2} = \frac{{43,3.4}}{{\sqrt 3 }} \approx 100 \Rightarrow FE = \sqrt {100} = 10\left( {\;cm} \right)\).

Lưu ý: Diện tích tam giác đều có cạnh \(a\)\(S = \frac{{{a^2}\sqrt 3 }}{4}\).

Lời giải

Bài 5.	Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)

Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).

Từ đó \[AM = AN\]\[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP