Câu hỏi:

04/02/2026 8 Lưu

Một hộp đựng mỹ phẩm được thiết kế (tham khảo hình vẽ) có thân hộp là hình trụ có bán kính hình tròn đáy \(r = 5cm\), chiều cao \(h = 6cm\)và nắp hộp là một nửa hình cầu. Người ta cần sơn mặt ngoài của cái hộp đó (không sơn đáy) thì diện tích \(S\)cần sơn là bao nhiêu?

Một hộp đựng mỹ phẩm được thiết kế (tham khảo hình vẽ) có thân hộp là hình trụ có bán kính hình tròn đáy \(r = 5cm\), chiều cao \(h = 6cm\)và nắp hộp là một nửa hình cầu. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Diện tích nắp hộp cần sơn là: \({S_1} = \frac{{4\pi {r^2}}}{2} = 50\pi \)\(c{m^2}\).

Diện tích than hộp cần sơn là: \({S_2} = 2\pi rh = 60\pi \)\(c{m^2}\).

Diện tích \(S\)cần sơn là: \(S = {S_1} + {S_2} = 50\pi  + 60\pi  = 110\pi \)\(c{m^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một quả bóng bàn dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy   3,14). (ảnh 2)

Vì quả bóng bàn hình cầu có bán kính R = 2cm nên diện tích bề mặt quả bón là:

\[S = 4\pi {R^2} = 4.3,{14.2^2} = 50,24\left( {c{m^2}} \right)\]

Vậy diện tích bề mặt quả bóng bàn là 50,24cm2.

Lời giải

Một quả pha lê hình cầu có diện tích mặt cầu bằng 144 pi cm2. Tính thể tích quả pha lê đó. (ảnh 2)

Vì quả pha lê hình cầu có diện tích Smặt cầu = 144p cm2 nên:

\[\begin{array}{l}S = 4\pi {R^2}\\{R^2} = \frac{S}{{4\pi }}\\{R^2} = \frac{{144\pi }}{{4\pi }}\\{R^2} = 36\\ \Rightarrow R = 6\left( {cm} \right)\end{array}\]

Vậy thể tích quả pha lê là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.6^3} = 228\pi \)cm3.