Câu hỏi:

04/02/2026 9 Lưu

Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau:

Hình cầu

Bán kính (dm)

Diện tích mặt cầu (dm2)

Thể tích hình cầu (dm3)

Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau:  (ảnh 1)

\[4\]

\[?\]

\[?\]

\[?\]

\[144\pi \]

\[?\]

\[?\]

\[?\]

\[36\pi \]

\[?\]

\[196\pi \]

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

· Với \[R = 4\]

+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.4^2} = 64\pi \left( {d{m^2}} \right)\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.4^3} = \frac{{256}}{3}\pi \left( {d{m^3}} \right)\]

· Với \[S = 144\pi \]

+ Diện tích mặt cầu là:  \(S = 4\pi {R^2}\)  suy ra \({R^2} = \frac{S}{{4\pi }}\) , thay số \({R^2} = \frac{{144\pi }}{{4\pi }}\)  nên \({R^2} = 36\)

\( \Rightarrow R = 6\left( {dm} \right)\)

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.6^3} = 288\pi \left( {d{m^3}} \right)\]

· Với \[V = 36\pi \]

+ Thể tích mặt cầu là:  \(V = \frac{4}{3}\pi {R^3}\)  suy ra \({R^3} = \frac{{3V}}{{4\pi }}\)  thay số \({R^3} = \frac{{3.36\pi }}{{4\pi }}\) nên \({R^3} = 27\) hay

\(R = 3\left( {dm} \right)\)

+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.3^2} = 36\pi \left( {d{m^2}} \right)\]

· Với \[S = 196\pi \]

+ Diện tích mặt cầu là: \(S = 4\pi {R^2}\)  hay  \({R^2} = \frac{S}{{4\pi }}\) thay số  \({R^2} = \frac{{196\pi }}{{4\pi }}\) suy ra \({R^2} = 49\) vậy

\(R = 7\left( {dm} \right)\)

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.7^3} = \frac{{1372}}{3}\pi \left( {d{m^3}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì chiếc nón hình nón có bán kính đáy \[R = 28:2 = 14cm\] và đường sinh \[l = 30cm\]nên diện tích xung quanh của chiếc nón là: \({S_{xq}} = \pi Rl = 3,14.\;14.\;30 = 1318,8\;\left( {c{m^2}} \right)\)

Vậy diện tích lá dùng để làm nón là \(110\% .1318,8 = 1450,68\)\[c{m^2}.\]

Lời giải

Một lọ hình trụ được

Gọi bán kính và chiều cao của hình trụ lần lượt là \(R\) và \(h\).

Khi đó hình hộp chữ nhật có cạnh đáy là \[2R\] và chiều cao là\[h\]. Gọi \({V_1}\) và \({V_2}\) lần lượt là thể tích của hình trụ và hình hộp.

Ta có \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi {R^2}h}}{{4{R^2}h}}.\) Do đó \(\frac{{270}}{{{V_2}}} = \frac{\pi }{4}\).

Suy ra \({V_2} = \frac{{270 \cdot 4}}{\pi } \approx 344\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\)

Vậy thể tích hình hộp là \(344\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP