Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau:
Hình cầu
Bán kính (dm)
Diện tích mặt cầu (dm2)
Thể tích hình cầu (dm3)
![Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/8-1769751022.png)
\[4\]
\[?\]
\[?\]
\[?\]
\[144\pi \]
\[?\]
\[?\]
\[?\]
\[36\pi \]
\[?\]
\[196\pi \]
Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau:
|
Hình cầu |
Bán kính (dm) |
Diện tích mặt cầu (dm2) |
Thể tích hình cầu (dm3) |
![]() |
\[4\] |
\[?\] |
\[?\] |
|
\[?\] |
\[144\pi \] |
\[?\] |
|
|
\[?\] |
\[?\] |
\[36\pi \] |
|
|
\[?\] |
\[196\pi \] |
|
Quảng cáo
Trả lời:
· Với \[R = 4\]
+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.4^2} = 64\pi \left( {d{m^2}} \right)\]
+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.4^3} = \frac{{256}}{3}\pi \left( {d{m^3}} \right)\]
· Với \[S = 144\pi \]
+ Diện tích mặt cầu là: \(S = 4\pi {R^2}\) suy ra \({R^2} = \frac{S}{{4\pi }}\) , thay số \({R^2} = \frac{{144\pi }}{{4\pi }}\) nên \({R^2} = 36\)
\( \Rightarrow R = 6\left( {dm} \right)\)
+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.6^3} = 288\pi \left( {d{m^3}} \right)\]
· Với \[V = 36\pi \]
+ Thể tích mặt cầu là: \(V = \frac{4}{3}\pi {R^3}\) suy ra \({R^3} = \frac{{3V}}{{4\pi }}\) thay số \({R^3} = \frac{{3.36\pi }}{{4\pi }}\) nên \({R^3} = 27\) hay
\(R = 3\left( {dm} \right)\)
+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.3^2} = 36\pi \left( {d{m^2}} \right)\]
· Với \[S = 196\pi \]
+ Diện tích mặt cầu là: \(S = 4\pi {R^2}\) hay \({R^2} = \frac{S}{{4\pi }}\) thay số \({R^2} = \frac{{196\pi }}{{4\pi }}\) suy ra \({R^2} = 49\) vậy
\(R = 7\left( {dm} \right)\)
+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.7^3} = \frac{{1372}}{3}\pi \left( {d{m^3}} \right)\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì chiếc nón hình nón có bán kính đáy \[R = 28:2 = 14cm\] và đường sinh \[l = 30cm\]nên diện tích xung quanh của chiếc nón là: \({S_{xq}} = \pi Rl = 3,14.\;14.\;30 = 1318,8\;\left( {c{m^2}} \right)\)
Vậy diện tích lá dùng để làm nón là \(110\% .1318,8 = 1450,68\)\[c{m^2}.\]
Lời giải

Gọi bán kính và chiều cao của hình trụ lần lượt là \(R\) và \(h\).
Khi đó hình hộp chữ nhật có cạnh đáy là \[2R\] và chiều cao là\[h\]. Gọi \({V_1}\) và \({V_2}\) lần lượt là thể tích của hình trụ và hình hộp.
Ta có \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi {R^2}h}}{{4{R^2}h}}.\) Do đó \(\frac{{270}}{{{V_2}}} = \frac{\pi }{4}\).
Suy ra \({V_2} = \frac{{270 \cdot 4}}{\pi } \approx 344\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\)
Vậy thể tích hình hộp là \(344\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.