Câu hỏi:

04/02/2026 9 Lưu

Cho tam giác \[\Delta SO'A\] vuông tại cân \[\Delta SOB\], gọi \[\frac{{R'}}{R} = \frac{{SO'}}{{SO}}\]là trung điểm của \[\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} =  \frac{{{{R'}^2}.SO'}}{{{R^2}.SO}} = {\left( {\frac{{SO'}}{{SO}}} \right)^3} = \frac{1}{8}\], \[BC = 2dm\]. Khi quay tam giác \[{60^ \circ }\] xung quanh trục \[30{\rm{ }}cm\] ta được hình nón.

a) Tính diện t ích xung quanh hình nón.        

b) Tính thể tích hình nón.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \[\Delta SO'A\] vuông (ảnh 1)

a) khi quay tam giác \[{60^ \circ }\] xung quanh trục \[30{\rm{ }}cm\], tao ra hình nón có:

bán kính đáy \(r = \frac{{BC}}{2} = 1dm\),  đường sinh là \[{r_1},{h_1},{r_2},{h_2}\]

Diện tích xung quanh hình nón là:\[{60^ \circ }\]

b) Chiều cao của hình nón: \[h = \sqrt {{l^2} - {r^2}}  = \sqrt {{{\left( {\sqrt 2 } \right)}^2} - 1}  = 1dm\]

Thể tích hình nón:  \[V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .1.1 = \frac{1}{3}\pi \left( {d{m^3}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì chiếc nón hình nón có bán kính đáy \[R = 28:2 = 14cm\] và đường sinh \[l = 30cm\]nên diện tích xung quanh của chiếc nón là: \({S_{xq}} = \pi Rl = 3,14.\;14.\;30 = 1318,8\;\left( {c{m^2}} \right)\)

Vậy diện tích lá dùng để làm nón là \(110\% .1318,8 = 1450,68\)\[c{m^2}.\]

Lời giải

Vì diện tích toàn phần bằng hai lần diện tích xung quanh nên \(2\pi Rh + 2\pi {R^2} = 4\pi Rh \Leftrightarrow 2\pi {R^2} = 2\pi Rh \Leftrightarrow R = h.\)

Vậy bán kính đáy là \(5\;{\rm{cm}}\).

 Thể tích của hình trụ là \(V = \pi {R^2}h = \pi  \cdot {5^2} \cdot 5 = 125\pi \,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP