Câu hỏi:

09/02/2026 6 Lưu

Một trạm chỉ phát hai tín hiệu \[A\] và \[B\] với xác suất tương ứng 0,85 và 0,15 do có nhiễu trên đường truyền nên \[\frac{1}{7}\] tín hiệu \[A\] bị méo và thu được như tín hiệu \[B\]; còn \[\frac{1}{8}\] tín hiệu \[B\] bị méo thành và thu được như\[A\]. Xác suất thu được tín hiệu \[A\] là

A. \[\frac{{963}}{{1120}}\]. 
B. \[\frac{{283}}{{1120}}\]. 
C. \[\frac{{837}}{{1120}}\].     
D. \[\frac{{157}}{{1120}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[A\] là biến cố “Phát tín hiệu \[A\]”

Gọi \[B\] là biến cố “Phát tín hiệu \[A\]”

Gọi \[{T_A}\] là biến cố “Phát được tín hiệu \[A\]”

Gọi \[{T_B}\] là biến cố “Phát được tín hiệu \[B\]”

Ta cần tính \[P\left( {{T_A}} \right)\]

Với \[P\left( {{T_A}} \right) = P\left( A \right).P\left( {{T_A}|A} \right) + P\left( B \right).P\left( {{T_A}|B} \right)\]

Ta có: \[P\left( A \right) = 0,85\]

\[\begin{array}{l}P\left( {{T_B}|A} \right) = \frac{1}{7} \Rightarrow P\left( {{T_A}|A} \right) = 1 - \frac{1}{7} = \frac{6}{7}\\P\left( B \right) = 0,15\\P\left( {{T_A}|B} \right) = \frac{1}{8}\end{array}\]

Do đó \[P\left( {{T_A}} \right) = P\left( A \right).P\left( {{T_A}|A} \right) + P\left( B \right).P\left( {{T_A}|B} \right) = 0,85.\frac{6}{7} + 0,15.\frac{1}{8} = \frac{{837}}{{1120}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({A_1},\;{A_2}\) lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

Nên \({A_1},\;{A_2}\) là hệ biến cố đầy đủ.

Gọi \(B\) “ Học sinh đó tham gia câu lạc bộ nghệ thuật ”

\(P\left( {{A_1}} \right) = 48\%  = 0,48\), \(P\left( {{A_2}} \right) = 1 - 0,48 = 0,52\).

\(P\left( {B|{A_1}} \right) = 18\%  = 0,18\); \(P\left( {B|{A_2}} \right) = 15\%  = 0,15\)

Áp dụng công thức xác suất toàn phần

\(P\left( B \right) = P\left( {B|{A_1}} \right).P\left( {{A_1}} \right) + P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)\)\( = 0,18.0,48 + 0,15.0,52 = \frac{{411}}{{2500}} = 0,1644\)

Xác suất để học sinh đó là nam, biếtsrL| rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes\(P\left( {{A_2}|B} \right) = \frac{{P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}}\)\( = \frac{{0,15.0,52}}{{0,1644}} = \frac{{65}}{{137}} \approx 0,47\).

Lời giải

Gọi A là biến cố "gọi được sinh viên nam".

Gọi B là biến cố "gọi được sinh viên đạt điểm giỏi môn Xác suất thống kê",

Ta đi tính \(P\left( {B\mid A} \right)\). Ta có: \(n\left( A \right) = \frac{{40}}{{95}}\) và \(n\left( {A \cap B} \right) = \frac{{12}}{{95}}\).

Do đó: \(P\left( {B\mid A} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( A \right)}} = \frac{{12}}{{95}}:\frac{{40}}{{95}} = 0,3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\frac{5}{{24}}\]. 
B. \[\frac{2}{5}\].     
C. \[\frac{4}{{25}}\]. 
D. \[\frac{1}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP