Một trạm chỉ phát hai tín hiệu \[A\] và \[B\] với xác suất tương ứng 0,85 và 0,15 do có nhiễu trên đường truyền nên \[\frac{1}{7}\] tín hiệu \[A\] bị méo và thu được như tín hiệu \[B\]; còn \[\frac{1}{8}\] tín hiệu \[B\] bị méo thành và thu được như\[A\]. Xác suất thu được tín hiệu \[A\] là
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 6 (có lời giải) !!
Quảng cáo
Trả lời:
Gọi \[A\] là biến cố “Phát tín hiệu \[A\]”
Gọi \[B\] là biến cố “Phát tín hiệu \[A\]”
Gọi \[{T_A}\] là biến cố “Phát được tín hiệu \[A\]”
Gọi \[{T_B}\] là biến cố “Phát được tín hiệu \[B\]”
Ta cần tính \[P\left( {{T_A}} \right)\]
Với \[P\left( {{T_A}} \right) = P\left( A \right).P\left( {{T_A}|A} \right) + P\left( B \right).P\left( {{T_A}|B} \right)\]
Ta có: \[P\left( A \right) = 0,85\]
\[\begin{array}{l}P\left( {{T_B}|A} \right) = \frac{1}{7} \Rightarrow P\left( {{T_A}|A} \right) = 1 - \frac{1}{7} = \frac{6}{7}\\P\left( B \right) = 0,15\\P\left( {{T_A}|B} \right) = \frac{1}{8}\end{array}\]
Do đó \[P\left( {{T_A}} \right) = P\left( A \right).P\left( {{T_A}|A} \right) + P\left( B \right).P\left( {{T_A}|B} \right) = 0,85.\frac{6}{7} + 0,15.\frac{1}{8} = \frac{{837}}{{1120}}\]Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({A_1},\;{A_2}\) lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam
Nên \({A_1},\;{A_2}\) là hệ biến cố đầy đủ.
Gọi \(B\) “ Học sinh đó tham gia câu lạc bộ nghệ thuật ”
\(P\left( {{A_1}} \right) = 48\% = 0,48\), \(P\left( {{A_2}} \right) = 1 - 0,48 = 0,52\).
\(P\left( {B|{A_1}} \right) = 18\% = 0,18\); \(P\left( {B|{A_2}} \right) = 15\% = 0,15\)
Áp dụng công thức xác suất toàn phần
\(P\left( B \right) = P\left( {B|{A_1}} \right).P\left( {{A_1}} \right) + P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)\)\( = 0,18.0,48 + 0,15.0,52 = \frac{{411}}{{2500}} = 0,1644\)
Xác suất để học sinh đó là nam, biếtsrL| rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes\(P\left( {{A_2}|B} \right) = \frac{{P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}}\)\( = \frac{{0,15.0,52}}{{0,1644}} = \frac{{65}}{{137}} \approx 0,47\).Lời giải
Gọi A là biến cố "gọi được sinh viên nam".
Gọi B là biến cố "gọi được sinh viên đạt điểm giỏi môn Xác suất thống kê",
Ta đi tính \(P\left( {B\mid A} \right)\). Ta có: \(n\left( A \right) = \frac{{40}}{{95}}\) và \(n\left( {A \cap B} \right) = \frac{{12}}{{95}}\).
Do đó: \(P\left( {B\mid A} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( A \right)}} = \frac{{12}}{{95}}:\frac{{40}}{{95}} = 0,3\).Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.