Một công ty đấu thầu \(2\) dự án. Khả năng thắng thầu của dự án \(1\) và dự án \(2\) lần lượt là \(0,6\) và \(0,5\). Khả năng thắng thầu cả \(2\) dự án là \(0,3\). Biết công ty không thắng thầu dự án \(1\), xác suất công ty thắng thầu dự án \(2\) là bao nhiêu?
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 6 (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Gọi \(A\) là biến cố “Thắng thầu dự án \(1\)”, \(B\) là biến cố “Thắng thầu dự án \(2\)”.
Ta có \[P\left( A \right) = 0,6;P\left( B \right) = 0,5;P\left( {AB} \right) = 0,3\].
Biết công ty không thắng thầu dự án \(1\), xác suất công ty thắng thầu dự án \(2\) là \(P\left( {B|\overline A } \right) = \frac{{P\left( {B\overline A } \right)}}{{P\left( {\overline A } \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{1 - P\left( A \right)}} = \frac{{0,5 - 0,3}}{{1 - 0,6}} = \frac{1}{2}\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({A_1},\;{A_2}\) lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam
Nên \({A_1},\;{A_2}\) là hệ biến cố đầy đủ.
Gọi \(B\) “ Học sinh đó tham gia câu lạc bộ nghệ thuật ”
\(P\left( {{A_1}} \right) = 48\% = 0,48\), \(P\left( {{A_2}} \right) = 1 - 0,48 = 0,52\).
\(P\left( {B|{A_1}} \right) = 18\% = 0,18\); \(P\left( {B|{A_2}} \right) = 15\% = 0,15\)
Áp dụng công thức xác suất toàn phần
\(P\left( B \right) = P\left( {B|{A_1}} \right).P\left( {{A_1}} \right) + P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)\)\( = 0,18.0,48 + 0,15.0,52 = \frac{{411}}{{2500}} = 0,1644\)
Xác suất để học sinh đó là nam, biếtsrL| rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes\(P\left( {{A_2}|B} \right) = \frac{{P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}}\)\( = \frac{{0,15.0,52}}{{0,1644}} = \frac{{65}}{{137}} \approx 0,47\).Lời giải
Gọi A là biến cố "gọi được sinh viên nam".
Gọi B là biến cố "gọi được sinh viên đạt điểm giỏi môn Xác suất thống kê",
Ta đi tính \(P\left( {B\mid A} \right)\). Ta có: \(n\left( A \right) = \frac{{40}}{{95}}\) và \(n\left( {A \cap B} \right) = \frac{{12}}{{95}}\).
Do đó: \(P\left( {B\mid A} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( A \right)}} = \frac{{12}}{{95}}:\frac{{40}}{{95}} = 0,3\).Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.