Câu hỏi:

11/02/2026 6 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh bằng \(3\sqrt 2 ,\widehat {ABC} = 60^\circ ,\)\(AB \bot SC,\)   \(\Delta SAC\) đều. Khoảng cách giữa hai đường thẳng \(AB\)\(SD\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

3

Đáp án: 3.

Cho hình chóp S.ABCD có đáy ABCDlà hình thoi cạnh bằng (ảnh 1)

Gọi \(O,I\) lần lượt là trung điểm của \(AC,AB\)\(H = BO \cap CI.\)

Kẻ \(HK \bot SC\) tại \(K.\)

Ta có:

\(\widehat {ABC} = 60^\circ \Rightarrow \Delta ABC\) đều \( \Rightarrow CI \bot AB\), mà \(AB \bot SC \Rightarrow AB \bot (SCI)\) nên \(AB \bot SI\) \( \Rightarrow \Delta SAB\)cân tại \(S\) (trung tuyến còn đường cao).

Suy ra \(SA = SB\)\(,\Delta ABC,\Delta SAC\)đều nên \(SABC\) là tứ diện đều. Khi đó, \(SH \bot (ABCD).\)

\( \Rightarrow HK \bot (SCD) \Rightarrow {\rm{d}}(H,(SCD)) = HK\)

Ta lại có

\( \Rightarrow {\rm{d}}(AB,SD) = {\rm{d}}(AB,(SCD)) = {\rm{d}}(B,(SCD)) = \frac{3}{2}{\rm{d}}(H,(SCD)) = \frac{3}{2}HK.\)

Tính \(HK.\)

Ta có \(CH = \frac{2}{3}CI = \frac{2}{3}.\frac{{AB\sqrt 3 }}{2} = \sqrt 6 \Rightarrow HK = \frac{{CH.HS}}{{SC}} = \frac{{CH\sqrt {S{C^2} - C{H^2}} }}{{SC}} = 2.\)

Vậy \({\rm{d}}(AB,SD) = \frac{3}{2}.2 = 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 8,64.

Ta có: \(\overrightarrow {DA} = \left( { - 3;0;0} \right)\), \(\overrightarrow {DB} = \left( {0; - 4;0} \right)\)\(\overrightarrow {DC} = \left( {0;0; - 5} \right)\).

Dễ thấy: \[\left\{ \begin{array}{l}\overrightarrow {DA} .\overrightarrow {DB} = 0 \Rightarrow DA \bot DB\\\overrightarrow {DB} .\overrightarrow {DC} = 0 \Rightarrow DB \bot DC\\\overrightarrow {DC} .\overrightarrow {DA} = 0 \Rightarrow DC \bot DA\end{array} \right.\] nên các điểm \(A\left( {0;4;5} \right)\), \(B\left( {3;0;5} \right)\), \(C\left( {3;4;0} \right)\), \(D\left( {3;4;5} \right)\) là các đỉnh của một hình hộp chữ nhật với \(DA = 3\), \(DB = 4\)\(DC = 5\).

Gọi \(S = d\left( {A,MD} \right) + d\left( {B,MD} \right) + d\left( {C,MD} \right)\).

Ta có \(d\left( {C,MD} \right) = DC = 5\) nên \(S\) lớn nhất khi \(d\left( {A,MD} \right) + d\left( {B,MD} \right)\) lớn nhất.

Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. (ảnh 1)

Xét \(\Delta DAB\) trong mặt phẳng \(\left( {DAB} \right)\): \(d\left( {A,MD} \right) + d\left( {B,MD} \right) \le AM + BM = AB\).

Dấu bằng xảy ra khi \(M\) là hình chiếu của \(D\) lên \(AB\).

               Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. (ảnh 1)

Do \[DM \bot AB \Rightarrow \overrightarrow {DM} .\overrightarrow {AB} = 0 \Rightarrow \left( {3t - 3} \right) \times 3 - 4t \times \left( { - 4} \right) = 0 \Leftrightarrow t = \frac{9}{{25}} \Rightarrow M\left( {\frac{{27}}{{25}};\frac{{64}}{{25}};5} \right)\].

Vậy \[a + b + c = \frac{{27}}{{25}} + \frac{{64}}{{25}} + 5 = 8,64\].

Câu 2

A. \(x = 7.\)                   
  B. \(x = 9.\)                  
C. \(x = 5.\)                   
D. \(x = 8.\)

Lời giải

Chọn A

Ta có \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = 8 \Leftrightarrow x = 7\).

Câu 3

A. \[2\].                           
B. \[1\].                         
C. \[3\].                        
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(S = \left\{ {k2\pi /k \in \mathbb{Z}} \right\}\).   
B. \(S = \left\{ {k\pi /k \in \mathbb{Z}} \right\}\).  
C. \(S = \left\{ {\frac{\pi }{2} + k2\pi /k \in \mathbb{Z}} \right\}\).     
D. \(S = \left\{ {\frac{\pi }{2} + k\pi /k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - 2.\)                        
B. \(\frac{1}{2}.\)        
C. \(18.\)                      
D. \(2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\(45^\circ \).                            
B.\(60^\circ \).                         
C. \(90^\circ \).                          
D. \(30^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {6; - 8; - 2} \right)\) .                 
B. \(\left( { - 2;2;4} \right)\).                
C. \(\left( { - 2; - 2;4} \right)\).            
D. \(\left( {2; - 2; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP