Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh bằng \(3\sqrt 2 ,\widehat {ABC} = 60^\circ ,\)\(AB \bot SC,\) \(\Delta SAC\) đều. Khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 3.

Gọi \(O,I\) lần lượt là trung điểm của \(AC,AB\) và \(H = BO \cap CI.\)
Kẻ \(HK \bot SC\) tại \(K.\)
Ta có:
\(\widehat {ABC} = 60^\circ \Rightarrow \Delta ABC\) đều \( \Rightarrow CI \bot AB\), mà \(AB \bot SC \Rightarrow AB \bot (SCI)\) nên \(AB \bot SI\) \( \Rightarrow \Delta SAB\)cân tại \(S\) (trung tuyến còn đường cao).
Suy ra \(SA = SB\)\(,\Delta ABC,\Delta SAC\)đều nên \(SABC\) là tứ diện đều. Khi đó, \(SH \bot (ABCD).\)
Vì
\( \Rightarrow HK \bot (SCD) \Rightarrow {\rm{d}}(H,(SCD)) = HK\)
Ta lại có
\( \Rightarrow {\rm{d}}(AB,SD) = {\rm{d}}(AB,(SCD)) = {\rm{d}}(B,(SCD)) = \frac{3}{2}{\rm{d}}(H,(SCD)) = \frac{3}{2}HK.\)
Tính \(HK.\)
Ta có \(CH = \frac{2}{3}CI = \frac{2}{3}.\frac{{AB\sqrt 3 }}{2} = \sqrt 6 \Rightarrow HK = \frac{{CH.HS}}{{SC}} = \frac{{CH\sqrt {S{C^2} - C{H^2}} }}{{SC}} = 2.\)
Vậy \({\rm{d}}(AB,SD) = \frac{3}{2}.2 = 3.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 8,64.
Ta có: \(\overrightarrow {DA} = \left( { - 3;0;0} \right)\), \(\overrightarrow {DB} = \left( {0; - 4;0} \right)\) và \(\overrightarrow {DC} = \left( {0;0; - 5} \right)\).
Dễ thấy: \[\left\{ \begin{array}{l}\overrightarrow {DA} .\overrightarrow {DB} = 0 \Rightarrow DA \bot DB\\\overrightarrow {DB} .\overrightarrow {DC} = 0 \Rightarrow DB \bot DC\\\overrightarrow {DC} .\overrightarrow {DA} = 0 \Rightarrow DC \bot DA\end{array} \right.\] nên các điểm \(A\left( {0;4;5} \right)\), \(B\left( {3;0;5} \right)\), \(C\left( {3;4;0} \right)\), \(D\left( {3;4;5} \right)\) là các đỉnh của một hình hộp chữ nhật với \(DA = 3\), \(DB = 4\) và \(DC = 5\).
Gọi \(S = d\left( {A,MD} \right) + d\left( {B,MD} \right) + d\left( {C,MD} \right)\).
Ta có \(d\left( {C,MD} \right) = DC = 5\) nên \(S\) lớn nhất khi \(d\left( {A,MD} \right) + d\left( {B,MD} \right)\) lớn nhất.

Xét \(\Delta DAB\) trong mặt phẳng \(\left( {DAB} \right)\): \(d\left( {A,MD} \right) + d\left( {B,MD} \right) \le AM + BM = AB\).
Dấu bằng xảy ra khi \(M\) là hình chiếu của \(D\) lên \(AB\).

Do \[DM \bot AB \Rightarrow \overrightarrow {DM} .\overrightarrow {AB} = 0 \Rightarrow \left( {3t - 3} \right) \times 3 - 4t \times \left( { - 4} \right) = 0 \Leftrightarrow t = \frac{9}{{25}} \Rightarrow M\left( {\frac{{27}}{{25}};\frac{{64}}{{25}};5} \right)\].
Vậy \[a + b + c = \frac{{27}}{{25}} + \frac{{64}}{{25}} + 5 = 8,64\].
Câu 2
Lời giải
Chọn A
Ta có \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = 8 \Leftrightarrow x = 7\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
