Tại một khu bảo tồn thiên nhiên, các nhà khoa học đã thả một số cá thể của một loài động vật quý hiếm trong một khu rừng rộng 10 hecta và theo dõi sự tăng trưởng số lượng của chúng. Họ thấy rằng số lượng cá thể của loài động vật đó sau \(t\) năm kể từ khi nuôi tại khu bảo tồn được xấp xỉ bởi hàm số \(h\left( t \right) = 70{\log _2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30\) (\(t\) là số thực dương) và tốc độ tăng trưởng số lượng cá thể của loài động vật đó tại thời điểm sau đúng \(t\) năm kể từ khi nuôi được xấp xỉ bởi hàm số \(h'\left( t \right)\)(đơn vị: cá thể /năm).
Quảng cáo
Trả lời:
Lời giải
a) Đúng. Vì thời điểm ban đầu \(t = 0\), \(h\left( 0 \right) = 70{\log _2}1 + 30 = 30\) (cá thể).
b) Đúng. Vì \(9\) tháng bằng \(\frac{3}{4}\) năm.
Do đó số lượng cá thể của loài động vật đó sau \(9\) tháng kể từ khi bắt đầu nuôi bằng
\(h\left( {\frac{3}{4}} \right) = 70{\log _2}\left( {\frac{{8.\frac{3}{4} + 1}}{{\frac{3}{4} + 1}}} \right) + 30 = 70{\log _2}4 + 30 = 170\).
c) Sai. Vì
\(\begin{array}{l}h\left( t \right) = 70{\log _2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30\\ \Rightarrow h'\left( t \right) = 70.\frac{1}{{\left( {\frac{{8t + 1}}{{t + 1}}} \right).\ln 2}}.{\left( {\frac{{8t + 1}}{{t + 1}}} \right)^\prime } = \left( {\frac{{t + 1}}{{8t + 1}}} \right).\frac{7}{{\ln 2.{{\left( {t + 1} \right)}^2}}} = \frac{7}{{\ln 2}}.\frac{1}{{\left( {t + 1} \right).\left( {8t + 1} \right)}}\end{array}\)
Tốc độ tăng trưởng số lượng cá thể của loài động vật đó tại thời điểm đúng \(6\) năm kể từ khi nuôi là \(h'\left( 6 \right) = \frac{7}{{\ln 2}}.\frac{1}{{\left( {6 + 1} \right).\left( {8.6 + 1} \right)}} = \frac{1}{{49.\ln 2}} = 0,029444275594\)( cá thể /năm).
d) Đúng. Vì \(h'\left( t \right) = \frac{7}{{\ln 2}}.\frac{1}{{\left( {t + 1} \right).\left( {8t + 1} \right)}} > 0,\forall t \ge 0\).
Ta có \(h\left( 0 \right) = 30\) và \(\mathop {\lim }\limits_{t \to + \infty } \frac{{8t + 1}}{{t + 1}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{8 + \frac{1}{t}}}{{1 + \frac{1}{t}}} = 8\),
suy ra \(\mathop {\lim }\limits_{t \to + \infty } h\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \left( {70{{\log }_2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30} \right) = 70.{\log _2}8 + 30 = 240\).
Từ đó ta có BBT của hàm số \(h\left( t \right)\) như sau:

Vậy số lượng cá thể của loài động vật đó không vượt quá \(240\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \[33\].

Góc ở tâm chắn một cạnh của đa giác có số đo là: \[360^\circ :36 = 10^\circ \].
Góc nội tiếp chắn một cạnh của đa giác có số đo là: \[10^\circ :2 = 5^\circ \].
Để tạo thành một tam giác có một góc bằng \[120^\circ \] thì phải có góc nội tiếp chắn 24 cung liên tiếp từ 24 dây là 24 cạnh liền kề nhau của đa giác.
Chọn 2 đỉnh cách nhau 24 cạnh, có 36 cách chọn (chẳng hạn như \[{A_1}{A_{25}},{A_2}{A_{26}},...,{A_{36}}{A_{24}}\])
Với mỗi cách chọn 2 đỉnh ở trên, có 11 cách chọn đỉnh còn lại thoả mãn (ví dụ chọn cạnh \[{A_1}{A_{25}}\] thì các cách chọn đỉnh còn lại là \[{A_{26}},{A_{27}},...,{A_{36}}\]).
Vậy, số tam giác được tạo thành có một góc bằng \[120^\circ \] là: \[36.11 = 396\] (tam giác).
Số cách chọn ngẫu nhiên 3 đỉnh từ 36 đỉnh của đa giác là: \[C_{36}^3 = 7140\] (cách).
Xác suất cần tìm là: \[P = \frac{{396}}{{7140}} = \frac{{33}}{{595}}\].
Vậy \[595P = 33\].
Lời giải
Đáp án: 1200
Thay \(p\left( t \right) = 90\) vào hàm số cho trước:
\(100 + 20\cos \left( {120\pi t} \right) = 90\)\( \Leftrightarrow 20\cos \left( {120\pi t} \right) = - 10 \Leftrightarrow \cos \left( {120\pi t} \right) = - \frac{1}{2}\)
\( \Leftrightarrow \left[ \begin{array}{l}120\pi t = \frac{{2\pi }}{3} + k2\pi \\120\pi t = - \frac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{{180}} + \frac{k}{{60}}\\t = - \frac{1}{{180}} + \frac{k}{{60}}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
Ta lại có: \(0 \le t \le 10\).
TH1: \(0 \le \frac{1}{{180}} + \frac{k}{{60}} \le 10\)\( \Leftrightarrow 0 \le 1 + 3k \le 1800 \Leftrightarrow - 1 \le 3k \le 1799 \Rightarrow - 0,33 \le k \le 599,66\)
Vậy \(k \in \left\{ {0,1,2,...,599} \right\}\). Có 600 giá trị.
TH2: \(0 \le - \frac{1}{{180}} + \frac{k}{{60}} \le 10 \Leftrightarrow 0 \le - 1 + 3k \le 1800 \Leftrightarrow 1 \le 3k \le 1801 \Rightarrow 0,33 \le k \le 600,33\)
Vậy \(k \in \left\{ {1,2,3,...,600} \right\}\). Có 600 giá trị.
Kết luận
Tổng số lần huyết áp đạt mức 90 mmHg trong 10 phút đầu tiên là: \(600 + 600 = 1200{\rm{ }}\)lần
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.