Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) với \(AB = 6,AD = 8\). Biết \(SO\) vuông góc với mặt phẳng \((ABCD)\) và \(SA\) tạo với mặt phẳng \((ABCD)\) một góc \({45^\circ }\). Gọi \(M\) là trung điểm của \(SA\). Biết khoảng cách giữa hai đường thẳng \(SC\) và \(DM\) bằng \(\frac{{120}}{{\sqrt n }}\), giá trị của \(n\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 1201.
Cách 1:

Gọi \(H\) là trung điểm \(AO\). Ta có \(MH\) song song \(SO\) nên \(MH\) vuông góc với \((ABCD)\).
Kẻ \(HI\) vuông góc với \(DB\)\((I \in BD)\), \(HK\) vuông góc với \(MI\) \((K \in MI)\) thì \(HK\) vuông góc với \((MDB)\) nên \(d(H,(MDB) = HK\).
Ta có \(MO\)song song với \(SC\) nên \(d(SC,DM) = d(SC,(MDB)) = d(C,(MDB))\)\( = d(A,(MDB)) = 2.d(H,(MDB)) = 2HK\).
Kẻ \(AN\) vuông góc với \(DB\)\((N \in BD)\), , suy ra \(HI = \frac{1}{2}AN = \frac{{12}}{5}\).
Vì \(SO\) vuông góc với mặt phẳng \((ABCD)\) và \(SA\) tạo với mặt phẳng \((ABCD)\) một góc \({45^\circ }\) nên \(\widehat {SAO} = \)\({45^\circ }\), do đó tam giác \(SAO\) vuông cân tại \(O\), \(SO = AO = \frac{1}{2}BD = 5\), \(HM = \frac{5}{2}\).
Trong tam giác vuông \(HMI\) ta có: \(\frac{1}{{H{K^2}}} = \frac{1}{{H{I^2}}} + \frac{1}{{H{M^2}}} = \frac{{1201}}{{3600}}\)\( \Rightarrow HK = \frac{{60}}{{\sqrt {1201} }}\).
Vậy \(d(DM,SC) = 2.HK = \frac{{120}}{{\sqrt {1201} }}\). Do đó \(n = 1201\).
Cách 2:
1. Xây dựng hệ trục tọa độ và xác định tọa độ các điểm:

Đặt hệ trục tọa độ \(Oxyz\) sao cho \(O\) là gốc tọa độ \((0,0,0)\).
Vì \(ABCD\) là hình chữ nhật tâm \(O\) với \(AB = 6\) và \(AD = 8\), ta có thể đặt tọa độ các đỉnh của đáy như sau: \(A( - 3, - 4,0)\), \(B(3, - 4,0)\), \(C(3,4,0)\), \(D( - 3,4,0)\).
Kiểm tra lại độ dài các cạnh: \(AB = \sqrt {{{(3 - ( - 3))}^2} + {{( - 4 - ( - 4))}^2} + {{(0 - 0)}^2}} = \sqrt {{6^2}} = 6\);
\(AD = \sqrt {{{( - 3 - ( - 3))}^2} + {{(4 - ( - 4))}^2} + {{(0 - 0)}^2}} = \sqrt {{8^2}} = 8\).
Độ dài đường chéo của hình chữ nhật \(AC = \sqrt {A{B^2} + A{D^2}} = \sqrt {{6^2} + {8^2}} = \sqrt {36 + 64} = \sqrt {100} = 10\).
Vì \(O\) là tâm của hình chữ nhật, \(AO = \frac{1}{2}AC = \frac{1}{2} \cdot 10 = 5\).
Vì \(SO\) vuông góc với mặt phẳng \((ABCD)\), nên \(SO\) là chiều cao của hình chóp và \(S\) nằm trên trục \(Oz\).
Góc giữa \(SA\) và mặt phẳng \((ABCD)\) là góc giữa \(SA\) và hình chiếu của nó lên \((ABCD)\), tức là \(\widehat {SAO}\).
Theo đề bài, \(\widehat {SAO} = {45^\circ }\). Xét tam giác vuông \(SAO\) tại \(O\):
\(SO = AO \cdot \tan (\widehat {SAO}) = 5 \cdot \tan ({45^\circ }) = 5 \cdot 1 = 5\). Vậy tọa độ điểm \(S\) là \((0,0,5)\).
\(M\) là trung điểm của \(SA\). Với \(S(0,0,5)\) và \(A( - 3, - 4,0)\): \(M = \left( { - \frac{3}{2}, - 2,\frac{5}{2}} \right)\).
2. Tính khoảng cách giữa hai đường thẳng \(SC\) và \(DM\):
Đường thẳng \(SC\) đi qua \(S(0,0,5)\) và có vectơ chỉ phương \(\vec u = \overrightarrow {SC} = (3,4, - 5)\).
Đường thẳng \(DM\) đi qua \(D( - 3,4,0)\) và có vectơ chỉ phương \(\vec v = \overrightarrow {DM} = \left( {\frac{3}{2}, - 6,\frac{5}{2}} \right)\).
\(d(SC,DM) = \frac{{\left| {\overrightarrow {SD} .[\vec u,\vec v]} \right|}}{{\left| {\left[ {\vec u,\vec v} \right]} \right|}}\), Vectơ \(\overrightarrow {SD} = ( - 3,4, - 5)\).
Ta có: \(\left[ {\vec u,\vec v} \right] = \)\( = ( - 20, - 15, - 24)\); \(\left| {\overrightarrow {SD} .[\vec u,\vec v]} \right|\)\( = 120\).
\(\left| {\left[ {\vec u,\vec v} \right]} \right| = \sqrt {{{( - 20)}^2} + {{( - 15)}^2} + {{( - 24)}^2}} = \sqrt {400 + 225 + 576} = \sqrt {1201} \).
Khoảng cách giữa hai đường thẳng \(SC\) và \(DM\) là: \(d(SC,DM) = \frac{{|120|}}{{\sqrt {1201} }} = \frac{{120}}{{\sqrt {1201} }}\).
Theo đề bài, khoảng cách này bằng \(\frac{{120}}{{\sqrt n }}\). Do đó, \(\frac{{120}}{{\sqrt n }} = \frac{{120}}{{\sqrt {1201} }}\). Suy ra \(\sqrt n = \sqrt {1201} \).
Vậy \(n = 1201\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
a) Đúng. Vì thời điểm ban đầu \(t = 0\), \(h\left( 0 \right) = 70{\log _2}1 + 30 = 30\) (cá thể).
b) Đúng. Vì \(9\) tháng bằng \(\frac{3}{4}\) năm.
Do đó số lượng cá thể của loài động vật đó sau \(9\) tháng kể từ khi bắt đầu nuôi bằng
\(h\left( {\frac{3}{4}} \right) = 70{\log _2}\left( {\frac{{8.\frac{3}{4} + 1}}{{\frac{3}{4} + 1}}} \right) + 30 = 70{\log _2}4 + 30 = 170\).
c) Sai. Vì
\(\begin{array}{l}h\left( t \right) = 70{\log _2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30\\ \Rightarrow h'\left( t \right) = 70.\frac{1}{{\left( {\frac{{8t + 1}}{{t + 1}}} \right).\ln 2}}.{\left( {\frac{{8t + 1}}{{t + 1}}} \right)^\prime } = \left( {\frac{{t + 1}}{{8t + 1}}} \right).\frac{7}{{\ln 2.{{\left( {t + 1} \right)}^2}}} = \frac{7}{{\ln 2}}.\frac{1}{{\left( {t + 1} \right).\left( {8t + 1} \right)}}\end{array}\)
Tốc độ tăng trưởng số lượng cá thể của loài động vật đó tại thời điểm đúng \(6\) năm kể từ khi nuôi là \(h'\left( 6 \right) = \frac{7}{{\ln 2}}.\frac{1}{{\left( {6 + 1} \right).\left( {8.6 + 1} \right)}} = \frac{1}{{49.\ln 2}} = 0,029444275594\)( cá thể /năm).
d) Đúng. Vì \(h'\left( t \right) = \frac{7}{{\ln 2}}.\frac{1}{{\left( {t + 1} \right).\left( {8t + 1} \right)}} > 0,\forall t \ge 0\).
Ta có \(h\left( 0 \right) = 30\) và \(\mathop {\lim }\limits_{t \to + \infty } \frac{{8t + 1}}{{t + 1}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{8 + \frac{1}{t}}}{{1 + \frac{1}{t}}} = 8\),
suy ra \(\mathop {\lim }\limits_{t \to + \infty } h\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \left( {70{{\log }_2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30} \right) = 70.{\log _2}8 + 30 = 240\).
Từ đó ta có BBT của hàm số \(h\left( t \right)\) như sau:

Vậy số lượng cá thể của loài động vật đó không vượt quá \(240\).
Lời giải
Đáp án: \[33\].

Góc ở tâm chắn một cạnh của đa giác có số đo là: \[360^\circ :36 = 10^\circ \].
Góc nội tiếp chắn một cạnh của đa giác có số đo là: \[10^\circ :2 = 5^\circ \].
Để tạo thành một tam giác có một góc bằng \[120^\circ \] thì phải có góc nội tiếp chắn 24 cung liên tiếp từ 24 dây là 24 cạnh liền kề nhau của đa giác.
Chọn 2 đỉnh cách nhau 24 cạnh, có 36 cách chọn (chẳng hạn như \[{A_1}{A_{25}},{A_2}{A_{26}},...,{A_{36}}{A_{24}}\])
Với mỗi cách chọn 2 đỉnh ở trên, có 11 cách chọn đỉnh còn lại thoả mãn (ví dụ chọn cạnh \[{A_1}{A_{25}}\] thì các cách chọn đỉnh còn lại là \[{A_{26}},{A_{27}},...,{A_{36}}\]).
Vậy, số tam giác được tạo thành có một góc bằng \[120^\circ \] là: \[36.11 = 396\] (tam giác).
Số cách chọn ngẫu nhiên 3 đỉnh từ 36 đỉnh của đa giác là: \[C_{36}^3 = 7140\] (cách).
Xác suất cần tìm là: \[P = \frac{{396}}{{7140}} = \frac{{33}}{{595}}\].
Vậy \[595P = 33\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.