I. PHẦN TRẮC NGHIỆM KHÁCH QUAN
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây.
Cho \(3.4 = 2.6\) tỉ lệ thức nào sau đây được lập từ đẳng thức đã cho?
I. PHẦN TRẮC NGHIỆM KHÁCH QUAN
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây.
Cho \(3.4 = 2.6\) tỉ lệ thức nào sau đây được lập từ đẳng thức đã cho?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 7 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Từ đẳng thức \(3\,\,.\,\,4 = 2\,\,.\,\,6\) ta lập được các tỉ lệ thức là: \(\frac{3}{2} = \frac{6}{4};\,\,\frac{3}{6} = \frac{2}{4};\,\,\frac{2}{3} = \frac{4}{6};\,\,\frac{2}{4} = \frac{3}{6}\).
Do đó, ta lập được tỉ lệ thức \(\frac{3}{2} = \frac{6}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x;\,\,y;\,\,z\) (tờ) lần lượt là số tờ tiền \(2\,\,000\) đồng; \(5\,\,000\) đồng và \(10\,\,000\) đồng \(\left( {x;\,\,y;\,\,z \in {\mathbb{N}^*}} \right)\).
Vì có tất cả \(16\) tờ tiền nên \(x + y + z = 16\).
Vì tổng giá trị mỗi loại tiền là như nhau nên số tờ tiền mỗi loại và giá trị một tờ tiền mỗi loại tỉ lệ nghịch với nhau.
Ta có: \(x.2000 = y.5000 = z.10000\)
Suy ra \(\frac{{2\,\,000x}}{{10\,\,000}} = \frac{{5\,\,000y}}{{10\,\,000}} = \frac{{10\,\,000z}}{{10\,\,000}}\) hay \(\frac{x}{5} = \frac{y}{2} = \frac{z}{1}\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{5} = \frac{y}{2} = \frac{z}{1} = \frac{{x + y + z}}{{5 + 2 + 1}} = \frac{{16}}{8} = 2\).
Khi đó, \(\frac{x}{5} = 2\) nên \(x = 2\,\,.\,\,5 = 10\) (thỏa mãn);
\(\frac{y}{2} = 2\) nên \(y = 2\,\,.\,\,2 = 4\) (thỏa mãn);
\(\frac{z}{1} = 2\) nên \(z = 1\,\,.\,\,2 = 2\) (thỏa mãn).
Vậy số tờ tiền mỗi loại \(2\,\,000\) đồng; \(5\,\,000\) đồng; \(10\,\,000\) đồng lần lượt là \(10\) tờ; \(4\) tờ; \(2\) tờ.
Lời giải
a) \(\frac{5}{x} = \frac{{12}}{{ - 13}}\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(12x = 5.\left( { - 13} \right)\)
\(12x = - 65\)
\(x = \frac{{ - 65}}{{12}}\)
Vậy \(x = \frac{{ - 65}}{{12}}\).
b) \(\frac{{\left| {2x - 5} \right|}}{{ - 21}} = \frac{{ - 3}}{7}\)
Áp dụng tính chất của tỉ lệ thức, ta có:
\(\left| {2x - 5} \right|.7 = \left( { - 3} \right).\left( { - 21} \right)\)
\(\left| {2x - 5} \right|.7 = 63\)
\(\left| {2x - 5} \right| = 63:7\)
\(\left| {2x - 5} \right| = 9\)
Trường hợp 1: \(2x - 5 = - 9\)
\(2x = \left( { - 9} \right) + 5\)
\(2x = - 4\)
\(x = \left( { - 4} \right):2\)
\(x = - 2\)
Trường hợp 2: \(2x - 5 = 9\)
\(2x = 9 + 5\)
\(2x = 14\)
\(x = 14:2\)
\(x = 7\)
Vậy \(x \in \left\{ { - 2;\,\,7} \right\}\).
c) \(\frac{{4x - 2}}{8} = \frac{{32}}{{4x - 2}}\)
Áp dụng tính chất của tỉ lệ thức, ta có:
\(\left( {4x - 2} \right)\,\,.\,\,\left( {4x - 2} \right) = 8\,\,.\,\,32\)
\({\left( {4x - 2} \right)^2} = 256\)
\({\left( {4x - 2} \right)^2} = {16^2} = {\left( { - 16} \right)^2}\)
Trường hợp 1: \(4x - 2 = 16\)
\(4x = 16 + 2\)
\(4x = 18\)
\(x = \frac{9}{2}\)
Trường hợp 2: \(4x - 2 = - 16\)
\(4x = \left( { - 16} \right) + 2\)
\(4x = - 14\)
\(x = \frac{{ - 7}}{2}\)
Vậy \(x \in \left\{ {\frac{9}{2};\,\,\frac{{ - 7}}{2}} \right\}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.