(2,0 điểm).
Tìm tất cả các bộ ba số nguyên dương \(\left( {a,k,m} \right)\). Cho ba số nguyên dương \(a,k,m\) thỏa mãn đẳng thức \(k + {a^k} = m + 2{a^m}\) (1).
a) Chứng minh \(k > m\).
b) Tìm tất cả các bộ ba số nguyên dương \(\left( {a,k,m} \right)\) thỏa mãn (1).
(2,0 điểm).
Tìm tất cả các bộ ba số nguyên dương \(\left( {a,k,m} \right)\). Cho ba số nguyên dương \(a,k,m\) thỏa mãn đẳng thức \(k + {a^k} = m + 2{a^m}\) (1).
a) Chứng minh \(k > m\).
b) Tìm tất cả các bộ ba số nguyên dương \(\left( {a,k,m} \right)\) thỏa mãn (1).
Quảng cáo
Trả lời:

Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
(4,0 điểm).
Cho số thực \(a = \sqrt {17 - 12\sqrt 2 } + 2\sqrt 2 + 6\) và biểu thức
\(P\left( x \right) = \left( {\frac{1}{{x - 4}} + \frac{{3\sqrt x + 10}}{{x\sqrt x - 2x - 4\sqrt x + 8}}} \right)\left( {\frac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{2\sqrt x }} - 4} \right)\) với \(x > 0\) và \(x \ne 4\).
a) Rút gọn \(a\) và \(P\left( x \right)\), sau đó tính giá trị của biểu thức \(P\left( x \right)\) tại \(x = a\).
b) Đặt \(Q\left( x \right) = P\left( x \right)\left( {x - \sqrt x + 1} \right)\) với \(x > 0\) và \(x \ne 1\). Chứng minh rằng \(Q\left( x \right) > 2\).
(4,0 điểm).
Cho số thực \(a = \sqrt {17 - 12\sqrt 2 } + 2\sqrt 2 + 6\) và biểu thức
\(P\left( x \right) = \left( {\frac{1}{{x - 4}} + \frac{{3\sqrt x + 10}}{{x\sqrt x - 2x - 4\sqrt x + 8}}} \right)\left( {\frac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{2\sqrt x }} - 4} \right)\) với \(x > 0\) và \(x \ne 4\).
a) Rút gọn \(a\) và \(P\left( x \right)\), sau đó tính giá trị của biểu thức \(P\left( x \right)\) tại \(x = a\).
b) Đặt \(Q\left( x \right) = P\left( x \right)\left( {x - \sqrt x + 1} \right)\) với \(x > 0\) và \(x \ne 1\). Chứng minh rằng \(Q\left( x \right) > 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



