Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 9{t^2}\) với \(t\) (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và \(s\)(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian \[10\] giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Câu hỏi trong đề: Đề kiểm tra Các quy tắc tính đạo hàm (có lời giải) !!
Quảng cáo
Trả lời:
Vận tốc tại thời điểm \(t\) là \(v(t) = s'(t) = - \frac{3}{2}{t^2} + 18t\) với \(t \in \left[ {0;10} \right]\).
Ta có : \(v'(t) = - 3t + 18 = 0 \Leftrightarrow t = 6\).
Suy ra: \(v\left( 0 \right) = 0;v\left( {10} \right) = 30;v\left( 6 \right) = 54\). Vậy vận tốc lớn nhất của vật đạt được bằng \[54\,\,\left( {m{\rm{/}}s} \right)\]Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({y^\prime } = {(2\sin x - \ln x)^\prime } = 2\cos x - \frac{1}{x}\);
\({y^{\prime \prime }} = {\left( {2\cos x - \frac{1}{x}} \right)^\prime } = 2{(\cos x)^\prime } - {\left( {\frac{1}{x}} \right)^\prime } = - 2\sin x + \frac{1}{{{x^2}}}\)
Câu 2
Lời giải
Ta có:\(y' = {\left[ {{{\left( {{x^2} + 1} \right)}^{\frac{3}{2}}}} \right]^\prime } = \frac{3}{2}{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}.{\left( {{x^2} + 1} \right)^\prime } = 3x{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(y'\left( 1 \right) = - \frac{3}{2}\)
b) Đồ thị của hàm số \(y'\) đi qua điểm \(A\left( {1;\frac{3}{2}} \right)\)
c) \[y'\left( 4 \right) = \frac{{3597}}{{16}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
