Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( {2 - x} \right) - 2.{f^2}\left( {2 + 3x} \right) + {x^2}.g\left( x \right) + 36x = 0\), \(\forall x \in \mathbb{R}\). Các mệnh đề sau đúng hay sai?
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( {2 - x} \right) - 2.{f^2}\left( {2 + 3x} \right) + {x^2}.g\left( x \right) + 36x = 0\), \(\forall x \in \mathbb{R}\). Các mệnh đề sau đúng hay sai?
a) \[f'(2) = 2\]
b) \[f(2) = 2\]
c) \(f\left( 2 \right) + f'\left( 2 \right) = 4\)
Câu hỏi trong đề: Đề kiểm tra Các quy tắc tính đạo hàm (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
\[{f^3}(2 - x) - 2{f^2}(2 + 3x) + {x^2}.g(x) + 36x = 0\], \[\,\,\forall x \in \mathbb{R}\]\[\left( 1 \right)\].
Vì \[\left( 1 \right)\]đúng\[\,\forall x \in \mathbb{R}\] nên cũng đúng với\[x = 0 \Rightarrow {f^3}(2) - 2{f^2}(2) = 0\,\,\]\[ \Rightarrow \left[ \begin{array}{l}f(2) = 0\\f(2) = 2\end{array} \right.\]
Lấy đạo hàm hai vế của \[\left( 1 \right)\]ta có:
\[ - 3{f^2}(2 - x).f'(2 - x) - 12f(2 + 3x).f'(2 + 3x) + 2x.g(x) + {x^2}.g'(x) + 36 = 0\,\], \[\,\forall x \in \mathbb{R}\]
Cho \[x = 0\]\[ \Rightarrow - 3{f^2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\,\]\[\left( 2 \right)\].
Ta thấy \[f(2) = 0\] không thỏa mãn \[\left( 2 \right)\]nên \[f(2) = 2\], khi đó \[f'(2) = 1\]\[ \Rightarrow 3f(2) + 4f'(2) = 10\]..
Vậy \(A = 3.f\left( 2 \right) + 4.f'\left( 2 \right) = 10\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({y^\prime } = {(2\sin x - \ln x)^\prime } = 2\cos x - \frac{1}{x}\);
\({y^{\prime \prime }} = {\left( {2\cos x - \frac{1}{x}} \right)^\prime } = 2{(\cos x)^\prime } - {\left( {\frac{1}{x}} \right)^\prime } = - 2\sin x + \frac{1}{{{x^2}}}\)
Câu 2
Lời giải
Ta có:\(y' = {\left[ {{{\left( {{x^2} + 1} \right)}^{\frac{3}{2}}}} \right]^\prime } = \frac{3}{2}{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}.{\left( {{x^2} + 1} \right)^\prime } = 3x{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(y'\left( 1 \right) = - \frac{3}{2}\)
b) Đồ thị của hàm số \(y'\) đi qua điểm \(A\left( {1;\frac{3}{2}} \right)\)
c) \[y'\left( 4 \right) = \frac{{3597}}{{16}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
