Câu hỏi:

20/02/2026 5 Lưu

Một chất điểm chuyển động theo phương trình \(s(t) = 10 + t + 9{t^2} - {t^3}\) trong đó \(s\) tính bằng mét, \(t\) tính bằng giây. Tính thời gian để vận tốc của chất điểm đạt giá trị lớn nhất (tính từ thời điểm ban đầu)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(v(t) = {s^\prime }(t) =  - 3{t^2} + 9t + 1\) có đồ thị là Parabol, do đó \(v{(t)_{\max }} \Leftrightarrow t = \frac{{ - 9}}{{ - 6}} = \frac{3}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \({y^\prime } = {(2\sin x - \ln x)^\prime } = 2\cos x - \frac{1}{x}\);

\({y^{\prime \prime }} = {\left( {2\cos x - \frac{1}{x}} \right)^\prime } = 2{(\cos x)^\prime } - {\left( {\frac{1}{x}} \right)^\prime } =  - 2\sin x + \frac{1}{{{x^2}}}\)

Câu 2

A. \(\frac{3}{2}{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}\).         
B. \(\frac{3}{4}{x^{\frac{1}{4}}}\).    
C. \(\frac{3}{2}{\left( {2x} \right)^{\frac{1}{2}}}\).       
D. \(3x{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}\).

Lời giải

Ta có:\(y' = {\left[ {{{\left( {{x^2} + 1} \right)}^{\frac{3}{2}}}} \right]^\prime } = \frac{3}{2}{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}.{\left( {{x^2} + 1} \right)^\prime } = 3x{\left( {{x^2} + 1} \right)^{\frac{1}{2}}}

Câu 3

A. \[y' = {e^{2x}}\].  
B. \[y' = 2{e^{2x}}\]. 
C. \[y' = \frac{1}{2}{e^{2x}}\].            
D. \[y' = \frac{1}{2}{e^x}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[f'\left( 0 \right) = 3\].     
B. \[f'\left( 1 \right) = 3e\].    
C. \[f'\left( { - 1} \right) =  - 3e\].           
D. \[f'\left( 2 \right) = 5{e^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \(y'\left( 1 \right) =  - \frac{3}{2}\)

Đúng
Sai

b) Đồ thị của hàm số \(y'\) đi qua điểm \(A\left( {1;\frac{3}{2}} \right)\)

Đúng
Sai

c) \[y'\left( 4 \right) = \frac{{3597}}{{16}}\]

Đúng
Sai
d) Điểm \(M\) thuộc đồ thị \((C)\)của hàm số \(y = {x^4} - 4{x^2} + 3\sqrt x  + 2 - \frac{1}{x}\) có hoành độ \({x_0} = 1\). Khi đó, phương trình tiếp tuyến của \((C)\) tại \(M\) vuông góc với đường thẳng \(y = \frac{2}{3}x\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP