Câu hỏi:

13/07/2024 37,702 Lưu

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB.

Chứng minh rằng Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

⇒ ΔMHS đều.

MD ⊥ SH nên MD là đường cao đồng thời là trung tuyến của ΔMHS.

⇒ D là trung điểm của HS

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Chứng minh tương tự ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì các tứ giác BSMP, HMQC, MRAG là hình bình hành)

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

+ K là trung điểm của BC nên ta có:

Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

+ M là trung điểm AC nên ta có:

Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

+ Lại có Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Cộng (1) với (3) ta được Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10 ,

kết hợp với (2) ta được hệ phương trình: Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Giải hệ phương trình ta được

 Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 2 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Lời giải

Giải bài 3 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta có: Giải bài 3 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Theo quy tắc ba điểm ta có:

Giải bài 3 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Lấy (1) trừ 3 lần (2) ta được:

Giải bài 3 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP