Câu hỏi:
12/04/2020 352Một tấm kim loại hình chữ nhật có tổng chiều dài và chiều rộng là 18cm. Người ta cắt ở bốn gốc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng 3cm, rồi gập tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Hỏi chiều rộng ban đầu của hình chữ nhật bằng bao nhiêu để hộp nhận được có thể tích lớn nhất ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Gọi chiều rộng của hình chữ nhật ban đầu là x (cm), 0 < x < 18
=> Chiều dài của hình chữ nhật ban đầu là 18 - x(cm)
Hình hộp tạo thành có chiều dài là 18 - x - 6 = 12 - x(cm), chiều rộng là x - 6 (cm) và chiều cao là (3cm). Do thể tích của hình hộp là
Từ bảng biến thiên suy ra thể tích lớn nhất
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình chữ nhật, các mặt và vuông góc với đáy. Góc giữa (SCD) và mặt đáy bằng , BC = a, Tính khoảng cách giữa AB và SC theo a.
Câu 2:
Ông Minh vay ngân hàng 300 triệu đồng để xây nhà theo phương thức trả góp với lãi suất 0,5% mỗi tháng. Nếu đầu mỗi tháng, bắt đầu từ tháng thứ nhất ông hoàn nợ cho ngân hàng 6.000.000 đồng và chịu lãi số tiền chưa trả. Hỏi số tháng tối thiểu để ông Minh có thể trả hết số tiền đã vay là bao nhiêu ?
Câu 3:
Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với tốc độ ban đầu (bỏ qua sức cản của không khí). Độ cao cực đại của viên đạn là bao nhiêu mét ? (cho gia tốc trọng trường )
Câu 5:
Cho mặt phẳng và điểm . Tọa độ của điểm M' đối xứng với M qua mặt phẳng (P) là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, . Kẻ . Mặt phẳng (AHK) cắt SC tại I. Tính thể tích khối cầu ngoại tiếp khối ABCDIHK.
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Biết khoảng cách từ A đến mặt phẳng (SBD) bằng . Tính khoảng cách từ C đến mặt phẳng (SBD).
về câu hỏi!