Câu hỏi:

16/04/2020 4,925 Lưu

Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Đặt POM^;OM=R0απ3;R>0Gọi V là khối tròn xoay thu được khi quay tam giác đó quanh trục Ox (H.63).

Tính thể tích của V theo α và R

Giải bài 5 trang 121 sgk Giải tích 12 | Để học tốt Toán 12

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: OP = OM.cosα = R. cosα

Phương trình đường thẳng OM đi qua O nên có dạng: y = k.x

OM tạo với trục hoành Ox 1 góc

⇒ Hệ số góc k = tanα

⇒ OM: y = x.tanα

Vậy khối tròn xoay được tạo bởi hình phẳng giới hạn bởi đường thẳng y = x.tanα; y = 0; x = 0; x = R.cosα quay quanh trục Ox

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP