Câu hỏi:

17/04/2020 3,797 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.ABCD với S1;-1;6, A1;2;3, B3;1;2, D2;3;4. Gọi I là tâm mặt cầu (S) ngoại tiếp hình chóp. Tính khoảng cách d từ I đến mặt phẳng (SAD)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

 

Lấy điểm C trong mặt phẳng (ABD) sao cho ABCD là hình chữ nhật

 

 

Do vậy, tâm mặt cầu ngoại tiếp hình chóp là trung điểm 

Cách 2: Gọi I(a;b;c) là tâm mặt cầu ngoại tiếp hình chóp là trung điểm S.ABCD. Ta có:

STUDY TIP

Khi xác định tâm mặt cầu ngoại tiếp hình chop hoặc lăng trụ ta có thể làm theo hai hường:

+ Hướng 1: Dùng điều kiện tâm cách đều các đỉnh đi đến giải hệ phương trình

+ Hướng 2: Dựa vào tính đặc biệt của hình như: Hình chop đều, hình chop có các đỉnh cùng nhìn một cạnh dưới một góc vuông

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án C

Vậy hai điểm cùng nhìn cạnh dưới một góc vuông. Điều đó chứng tỏ SC là đường kính của mặt cầu ngoại tiếp hình chóp. Do đó bán kính

Lời giải

Chọn đáp án A

Cách 1:

Lấy mặt phẳng αvuông góc với SO cắt (SAC), (SBD) theo các giao tuyến x’Ox, y’Oy. 

Chọn hệ tọa độ Oxyz sao cho tia Oz trùng với tia OS

Cách 2:

Trong mặt phẳng (SAC) dựng đường thẳng qua O vuông góc với đường thẳng SO cắt hai đường thẳng SA, SC lần lượt tại A’, C’

Trong mặt phẳng (SBD) dựng đường thẳng qua O vuông góc với đường thẳng SO cắt hai đường thẳng SB, SD lần lượt tại B’, D’

Khi đó tứ diện OSA’B’ có OS, OA’, OB’ đôi một vuông góc nên ta chứng minh được 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP