Câu hỏi:

13/07/2024 4,011

Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE. Chứng minh rằng BE = CD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔBEA và CDA, ta có:

BA = CA (giả thiết)

∠A chung

AE=AD (giả thiết)

Suy ra: ΔBEA = ΔCDA (c.g.c)

Vậy: BE = CD (hai cạnh tương ứng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông ABD và EBD, ta có:

∠(BAD) =∠(BED) =90o

Cạnh huyền BD chung

∠(ABD) =∠(EBD) (Do BD là tia phân giác của góc ABC)

Suy ra: Δ ABD= Δ EBD(cạnh huyền, góc nhọn)

Vậy BA = BE ( hai cạnh tương ứng)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP