Câu hỏi:
13/07/2024 3,461Cho tam giác ABC có ∠B =∠C Tia phân giác của góc A cắt BC tại D. chứng minh rằng: BD = DC; AB = AC
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Trong ΔADB, ta có:
∠B +∠(A1 ) +∠(D1) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D1 ) =180o-(∠B +(A1)) (1)
Trong ΔADC, ta có:
∠C +∠(A2) +∠(D2) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D2) =180o-(∠C +∠(A2) ) (2)
+) Lại có: ∠B =∠C (gỉa thiết)
∠(A1 ) =∠(A2) (vì AD là tia phân giác của góc BAC) (3)
Từ (1), (2) và (3) suy ra: ∠(D1) =∠(D2)
Xét ΔABD và ΔACD, ta có:
∠(A1 ) =∠(A2) ( Vì AD là tia phân giác của góc BAC)
AD cạnh chung
∠(D1 ) =∠(D2) ( chứng minh trên).
Vậy: ΔABD= ΔACD (g.c.g)
Vậy: AB = AC (hai cạnh tương ứng)
DB = DC (hai cạnh tương ứng)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc vớ BC. Chứng minh rằng AB = BE
Câu 2:
Cho tam giác ABC. Vẽ ở phía ngoài tam giác ABC các tam giác vuông tại A và ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng: MN đi qua trung điểm của DE
Câu 3:
Cho tam giác ABC. Trên cạnh AB lấy các điểm D và E sao cho AD = BE. Qua D và E, vẽ các đường thẳng song song với BC, chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM + EN = NC
Hướng dẫn: qua N kẻ đường thẳng song song với AB
Câu 4:
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở O. Kẻ OD⊥AC, kẻ OE⊥AB. Chứng minh rằng OD = OE
Câu 5:
Cho tam giác ADE có ∠D = ∠E. Tia phân giác của góc D cắt AE ở điểm M. Tia phân giác của góc E cắt AD ở điểm N. So sánh các độ dài DN và EM
Câu 6:
Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD=AB.Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Một đường thẳng đi qua A cắt DE và BC theo thứ tự tại M và N. Chứng minh rằng: BC // DE
Câu 7:
Cho tam giác ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng xy (B, C nằm cùng phía đối với xy). Kẻ BD và CE vuông góc với xy. Chứng minh rằng: ΔBAD = ΔACE
về câu hỏi!