Câu hỏi:

13/07/2024 1,343

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng: AD = EF

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét Δ DBF và Δ FDE, ta có:

∠(BDF) =∠(DFE) (so le trong vì EF // AB)

DF cạnh chung

∠(DFB) =∠(FDE) (so le trong vì DE // BC)

Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: AD = EF

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông ABD và EBD, ta có:

∠(BAD) =∠(BED) =90o

Cạnh huyền BD chung

∠(ABD) =∠(EBD) (Do BD là tia phân giác của góc ABC)

Suy ra: Δ ABD= Δ EBD(cạnh huyền, góc nhọn)

Vậy BA = BE ( hai cạnh tương ứng)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP