Câu hỏi:
13/07/2024 1,526Cho hình dưới trong đó AE ⊥BC. Tính AB biết AE = 4m; AC = 5m; BC = 9m
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng định lý pitago vào tam giác vuông AEC ta có:
AC2=AE2+EC2
=>EC2=AC2-AE2=52-42=25-16=9
=>EC=3M
Ta có: BC = BE + EC
BE = BC – EC = 9 – 3 = 6(m)
Áp dụng định lí pitago vào tam giác vuông AEB, ta có:
AB2=AE2+EB2=42+62=16+36=52
Suy ra: AB = √52(m) ≈7,2m
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có AB/AC = 3/4 và BC = 15cm. Tính độ dài AB, AC
Câu 2:
Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD. Chứng minh rằng IB = IC, ID = IE.
Câu 3:
Cho tam giác ABC cân tại A, kẻ BH ⊥ AC. Gọi D là một điểm thuộc cạnh đáy BC. Kẻ DE ⊥ AC, DF ⊥ AB.
Chứng minh rằng DE + DF = BH
Câu 4:
Cho tam giác ADE cân tại A. Trên cạnh DE lấy các điểm B và C sao cho DB = EC < 1/2 DE. Chứng minh rằng AI là tia phân giác của góc BAC
Câu 5:
Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD. Gọi M là trung điểm BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.
Câu 6:
Cho đoạn thẳng AB. Vẽ các cung tâm A và B có cùng bán kính sao cho chúng cắt nhau tại C và D. chứng minh rằng CD là đường trung trực của AB.
Câu 7:
Cho tam giác ADE cân tại A. Trên cạnh DE lấy các điểm B và C sao cho DB = EC < 1/2 DE. Gọi I là giao điểm của MB và NC. Tam giác IBC là tam giác gì? Chứng minh điều đó?
về câu hỏi!