Câu hỏi:

19/04/2020 3,249 Lưu

Cho tam giác ABC với AB ≤ AC. Trên cạnh BC lấy một điểm M bất kỳ khác B và C. Chứng minh rằng AM < AC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ΔABC có AB ≤ AC ⇒ ∠C ≤ ∠B.

ΔABM có ∠M1 là góc ngoài nên ∠M1 > ∠B

⇒ ∠M1 > ∠C

ΔAMC có ∠M1 > ∠C ⇒ AC > AM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ DH ⊥ BC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét hai tam giác vuông ABD và HBD, ta có:

∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).

Cạnh huyền BD chung

∠BAD = ∠BHD = 90º

Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)

⇒ AD = HD (2 cạnh tương ứng) (1)

Trong tam giác vuông DHC có ∠DHC = 90o

⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) suy ra: AD < DC

Lời giải

Trên tia đối tia MA lấy điểm D sao cho MD = MA

Xét ΔAMB và ΔDMC, ta có:

MA = MD (theo cách vẽ)

∠(AMB) = ∠(DMC) (đối đỉnh)

MB = MC (gt)

Suy ra: ΔAMB = ΔDMC (c.g.c)

Suy ra: AB = CD (2 cạnh tương ứng)

và ∠D = ∠A1(2 góc tương ứng) (1)

Mà AB < AC (gt)

nên: CD < AC

Trong ΔADC, ta có: CD < AC

Suy ra: ∠D > ∠A2(đối diện cạnh lớn hơn là góc lớn hơn) (2)

Từ (1) và (2) suy ra: ∠A1 > ∠A2hay ∠(BAM) > ∠(MAC) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP