Câu hỏi:
19/04/2020 2,142Cho tam giác ABC với AB ≤ BC ≤ CA. Trên các cạnh BC và AC lần lượt lấy hai điểm M và N (khác A, B, C). Chứng minh rằng MN < AC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được
MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.
Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC ở D. So sánh các độ dài AD, DC.
Câu 2:
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. So sánh ∠(BAM) và ∠(MAC)
Câu 3:
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC ở D. So sánh các độ dài BD, DC.
Câu 4:
Chứng minh rằng nếu một tam giác vuông có một góc nhọn bằng 30o thì cạnh góc vuông đối diện với nó bằng nửa cạnh huyền.
Câu 5:
So sánh các cạnh của tam giác ABC biết rằng ∠A = 80o, ∠C = 40o
Câu 6:
Cho tam giác ABC vuông tại A, điểm K nằm giữa A và C. So sánh độ dài BK, BC.
Câu 7:
So sánh các góc của tam giác ABC biết rằng AB = 5cm, BC = 5cm, AC = 3cm.
về câu hỏi!