Câu hỏi:
19/04/2020 4,871Cho tam giác ABC cân tại A có AB = AC = 10cm, BC = 12cm. Vẽ cung tròn tâm A có bán kính 9cm. Cung đó có cắt đường thẳng BC hay không, có cắt cạnh BC hay không? Vì sao?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Kẻ AH ⊥ AB.
Xét hai tam giác vuông AHB và AHC, ta có:
∠AHB = ∠AHC = 90o
AB = AC (gt)
AH cạnh chung
Suy ra: ΔAHB = ΔAHC
(cạnh huyền - cạnh góc vuông)
Suy ra: HB = HC (hai cạnh tương ứng)
Ta có: HB = HC = BC/2 = 6 (cm)
Trong tam giác vuông AHB có ∠AHB = 90o
Áp dụng định lí Pi-ta-go, ta có:
AB2 = AH2 + HB2 ⇒ AH2 = AB2 – HB2 = 102 – 62 = 64
⇒ AH = 8 (cm)
Do bán kính cung tròn 9(cm) > 8(cm) nên cung tròn tâm A bán kính 9 cm cắt đường thẳng BC.
Gọi D là giao điểm của cung tròn tâm A bán kính 9 cm với BC.
Vì đường xiên AD < AC nên hình chiếu HD < HC.
Do đó D nằm giữa H và C.
Vậy cung tròn tâm A bán kính 9 cm cắt cạnh BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng AB < (BE + BF) / 2 .
Câu 3:
Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.
Câu 5:
Cho đường thẳng d và điểm A không thuộc d. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai?
(A) Có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d.
(B) Có duy nhất một đường kẻ xiên kẻ từ điểm A đến đường thẳng d.
(C) Có vô số đường vuông góc kẻ từ điểm A đến đường thẳng d.
(D) Có vô số đường kẻ xiên kẻ từ điểm A đến đường thẳng d.
Hãy vẽ hình minh họa cho các khẳng định đúng.
Câu 7:
Cho tam giác ABC cân tại A, điểm D nằm giữa B và C. Chứng minh rằng độ dài AD nhỏ hơn cạnh bên của tam giác ABC.
về câu hỏi!