Câu hỏi:

19/04/2020 1,298

Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', BC > B'C'.

Không sử dụng định lý Pytago, chứng minh rằng AC > A'C'

Câu hỏi trong đề:   Sách bài tập Toán 7 Tập 2 !!

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dùng phản chứng:

- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.

Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.

(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)

Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)

Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)

Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:

- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'

- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình sau. So sánh các độ dài AB, AC, AD, AE.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xem đáp án » 19/04/2020 16,675

Câu 2:

Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng AB < (BE + BF) / 2 .

Xem đáp án » 19/04/2020 14,575

Câu 3:

Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.

Xem đáp án » 19/04/2020 13,041

Câu 4:

Cho hình sau, chứng minh rằng: BD + CE < AB + AC

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xem đáp án » 19/04/2020 6,414

Câu 5:

Cho đường thẳng d và điểm A không thuộc d. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai?

(A) Có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d.

(B) Có duy nhất một đường kẻ xiên kẻ từ điểm A đến đường thẳng d.

(C) Có vô số đường vuông góc kẻ từ điểm A đến đường thẳng d.

(D) Có vô số đường kẻ xiên kẻ từ điểm A đến đường thẳng d.

Hãy vẽ hình minh họa cho các khẳng định đúng.

Xem đáp án » 19/04/2020 5,835

Câu 6:

Cho hình sau trong đó AB > AC. Chứng minh rằng EB > EC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xem đáp án » 19/04/2020 5,215

Câu 7:

Cho tam giác ABC cân tại A, điểm D nằm giữa B và C. Chứng minh rằng độ dài AD nhỏ hơn cạnh bên của tam giác ABC.

Xem đáp án » 19/04/2020 5,032

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn