Câu hỏi:
13/07/2024 696Cho góc xOy khác góc bẹt. Dùng một chiếc thước thẳng có chia khoảng, hãy nêu cách vẽ tia phân giác của góc xOy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Dùng thước chia khoảng, trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB.
- Nối AB.
- Dùng thước chia khoảng để đo đoạn AB, lấy trung điểm M của AB.
- Kẻ tia OM.
Khi đó, OM là tia phân giác của góc ∠xOy.
Chứng minh
Tam giác ABO có OA = OB ( cách dựng) nên tam giác OAB cân tại O.
Lại có: OM là đường trung tuyến nên OM cũng là đường phân giác của ∠(AOB). ( tính chất tam giác cân)
Vậy OM là tia phân giác của ∠(xOy).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB < AC, đường cao AH. Chứng minh rằng: HB < HC, ∠(HAB) < ∠ (HAC)(xét hai trường hợp: B nhọn và B tù)
Câu 2:
Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước. Gọi H là điểm thuộc đường thẳng BC sao cho AH ⊥ BC. Gọi I, J là các điểm thuộc đường thẳng AH sao cho EI ⊥ AH và GJ ⊥ AH. Chứng minh
ΔABH = ΔEAI, ΔACH = ΔGAJ
Từ đó suy ra đường thẳng AH cắt EG tại trung điểm K của EG (tức là AK là trung tuyến của tam giác AEG)
Câu 3:
Cho tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA. Hãy so sánh các góc AMB và ANC.
Câu 4:
Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước. Chứng minh rằng các đường thẳng AH, BF, CD đồng quy.
Câu 5:
Chứng minh rằng trong một tam giác, đường cao không lớn hơn đường trung tuyến xuất phát từ một đỉnh.
Câu 6:
Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC. Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D, F. Chứng minh rằng EA vuông góc với DF.
Câu 7:
Cho tam giác ABC có hai đường trung tuyến AD, BE vuông góc với nhau. Chứng minh rằng BC < 2AC.
về câu hỏi!